Повышающий преобразователь напряжения на mc34063 схема. Микросхема MC34063 схема включения

Основные технические характеристики MC34063

  • Широкий диапазон значений входных напряжений: от 3 В до 40 В;
  • Высокий выходной импульсный ток: до 1,5 А;
  • Регулируемое выходное напряжение;
  • Частота преобразователя до 100 кГц;
  • Точность внутреннего источника опорного напряжения: 2%;
  • Ограничение тока короткого замыкания;
  • Низкое потребление в спящем режиме.
Структура схемы:
  1. Источник опорного напряжения 1,25 В;
  2. Компаратор, сравнивающий опорное напряжение и входной сигнал с входа 5;
  3. Генератор импульсов сбрасывающий RS-триггер;
  4. Элемент И объединяющий сигналы с компаратора и генератора;
  5. RS-триггер устраняющий высокочастотные переключения выходных транзисторов;
  6. Транзистор драйвера VT2, в схеме эмиттерного повторителя, для усиления тока;
  7. Выходной транзистор VT1, обеспечивает ток до 1,5А.
Генератор импульсов постоянно сбрасывает RS-триггер, если напряжение на входе микросхемы 5 – низкое, то компаратор выдает сигнал на вход S сигнал устанавливающий триггер и соответственно включающий транзисторы VT2 и VT1. Чем быстрее придет сигнал на вход S тем больше времени транзистор будет находиться в открытом состоянии и тем больше энергии будет передано со входа на выход микросхемы. А если напряжение на входе 5 поднять выше 1,25 В, то триггер вообще не будет устанавливаться. И энергия не будет передаваться на выход микросхемы.

MC34063 повышающий преобразователь

Например я данную микросхему использовал чтобы получить 12 В питание интерфейсного модуля от ноутбучного порта USB (5 В), таким образом интерфейсный модуль работал когда работал ноутбук ему не нужен был свой источник бесперебойного питания.
Также имеет смысл использовать микросхему для питания контакторов, которым нужно более высокое напряжение, чем другим частям схемы.
Хотя MC34063 выпускается давно, но возможность работы от 3 В, позволяет её использовать в стабилизаторах напряжения питающихся от литиевых аккумуляторов.
Рассмотрим пример повышающего преобразователя из документации. Эта схема рассчитана на входное напряжение 12 В, выходное — 28 В при токе 175мА.
  • C1 – 100 мкФ 25 В;
  • C2 – 1500 пФ;
  • C3 – 330 мкФ 50 В;
  • DA1 – MC34063A;
  • L1 – 180 мкГн;
  • R1 – 0,22 Ом;
  • R2 – 180 Ом;
  • R3 – 2,2 кОм;
  • R4 – 47 кОм;
  • VD1 – 1N5819.
В данной схеме ограничение входного тока задается резистором R1, выходное напряжение определяется соотношением резистором R4 и R3.

Понижающий преобразователь на МС34063

Понизить напряжение значительно проще – существует большое количество компенсационных стабилизаторов не требующих катушек индуктивности, требующих меньшего количества внешних элементов, но и для импульсного преобразователя находиться работа когда выходное напряжение в несколько раз меньше входного, либо просто важен КПД преобразования.
В технической документации приводиться пример схемы с входным напряжение 25 В и выходным 5 В при токе 500мА.

  • C1 – 100 мкФ 50 В;
  • C2 – 1500 пФ;
  • C3 – 470 мкФ 10 В;
  • DA1 – MC34063A;
  • L1 – 220 мкГн;
  • R1 – 0,33 Ом;
  • R2 – 1,3 кОм;
  • R3 – 3,9 кОм;
  • VD1 – 1N5819.
Данный преобразователь можно использовать для питания USB устройств. Кстати можно повысить ток отдаваемый в нагрузку, для этого потребуется увеличить емкости конденсаторов C1 и C3, уменьшить индуктивность L1 и сопротивление R1.

МС34063 схема инвертирующего преобразователя

Третья схема используется реже двух первых, но не менее актуальна. Для точного измерения напряжений или усиления аудио сигналов часто требуется двуполярное питание, и МС34063 может помочь в получении отрицательных напряжений.
В документации приводиться схема позволяющая преобразовать напряжение 4,5 .. 6.0 В в отрицательное напряжение -12 В с током 100 мА.

  • C1 – 100 мкФ 10 В;
  • C2 – 1500 пФ;
  • C3 – 1000 мкФ 16 В;
  • DA1 – MC34063A;
  • L1 – 88 мкГн;
  • R1 – 0,24 Ом;
  • R2 – 8,2 кОм;
  • R3 – 953 Ом;
  • VD1 – 1N5819.
Обратите внимание, что в данной схеме сумма входного и выходного напряжения не должна превышать 40 В.

Аналоги микросхемы MC34063

Если MC34063 предназначена для коммерческого применении и имеет диапазон рабочих температур 0 .. 70°C, то её полный аналог MC33063 может работать в коммерческом диапазоне -40 .. 85°C.
Несколько производителей выпускают MC34063, другие производители микросхем выпускают полные аналоги: AP34063, KS34063. Даже отечественная промышленность выпускала полный аналог К1156ЕУ5 , и хотя эту микросхему купить сейчас большая проблема, но вот можно найти много схем методик расчетов именно на К1156ЕУ5, которые применимы к MC34063.
Если необходимо разработать новое устройство и какжется MC34063 подходит как нельзя лучше, то соит обратить внимание на более современные аналоги, например: NCP3063 .

Этот опус будет о 3-богатырях. Почему богатырях?))) Издревна, богатыри — защитники Родины, люди которые «тырили» , то есть копили, а не как сейчас -«воровали», богатство.. Наши накопители — это импульсные преобразователи, 3 типа (понижающий, повышающий, инвертор). Причем все три — на одной микросхеме MC34063 и на одном типа катушки DO5022 индуктивностью 150 мкГн. Применяются они в составе коммутатора СВЧ-сигнала на pin-диодах, схема и плата которых приведена в конце этой статьи.

Расчет понижающего преобразователя (step-down, buck) DC-DC на микросхеме MC34063

Расчет ведется по типовой методике “AN920/D” от ON Semiconductor. Cхема электрическая принципиальная преобразователя изображена на рисунке 1. Номера элементов схемы соответствуют последнему варианту cхемы (из файла “Driver of MC34063 3in1 – ver 08.SCH”).

Рис.1 Схема электрическая принципиальная понижающего (step-down) драйвера.

Выводы микросхемы:

Вывод 1 — SWC (switch collector) — коллектор выходного транзистора

Вывод 2 — SWE (switch emitter) — эмиттер выходного транзистора

Вывод 3 — (timing capacitor) — вход для подключения времязадающего конденсатора

Вывод 4 — GND – земля (соединяется с общим проводом понижающего DC-DC)

Вывод 5 — CII(FB ) (comparator inverting input) — инвертирующий вход компаратора

Вывод 6 — V CC — питание

Вывод 7 — Ipk — вход схемы ограничения максимального тока

Вывод 8 — DRC (driver collector) — коллектор драйвера выходного транзистора (в качестве драйвера выходного транзистора также используется биполярный транзистор, соединенный по схеме Дарлингтона, стоящий внутри микросхемы).

Элементы:

L 3 — дроссель. Лучше использовать дроссель открытого типа (не полностью закрытый ферритом) — серия DO5022T от Сoilkraft или RLB от Bourns, так как такой дроссель входит в насыщение при большем токе, чем распространённые дроссели закрытого типа CDRH Sumida. Лучше использовать дроссели большей индуктивности, чем полученное расчетное значение.

С 11 — времязадающий конденсатор, он определяет частоту преобразования. Максимальная частота преобразования для микросхем 34063 составляет порядка 100 кГц.

R 24 , R 21 — делитель напряжения для схемы компаратора. На неинвертирующий вход компаратора подается напряжение 1,25В от внутреннего регулятора, а на инвертирующий вход — с делителя напряжения. Когда напряжение с делителя становится равным напряжению от внутреннего регулятора — компаратор переключает выходной транзистор.

C 2 , С 5 , С 8 и С 17 , С 18 — соответственно, выходной и входной фильтры. Емкость выходного фильтра определяет величину пульсаций выходного напряжения. Если в процессе расчетов получается, что для заданной величины пульсаций требуется очень большая емкость, можно расчет сделать для больших пульсаций, а потом использовать дополнительный LC-фильтр. Входную емкость обычно берут 100 … 470 мкФ (рекомендация TI не менее 470 мкФ), выходную – также берут 100 … 470 мкФ (взято 220 мкФ).

R 11-12-13 (R sc) — токочувствительный резистор. Он нужен для схемы ограничения тока. Максимальный ток выходного транзистора для MC34063 = 1.5А, для AP34063 = 1.6А. Если пиковый переключаемый ток будет превышать эти значения, то микросхема может сгореть. Если точно известно, что пиковый ток даже близко не подходит к максимальным значениям, то этот резистор можно не ставить. Расчет ведется именно на пиковый ток (внутреннего транзистора). При использовании внешнего транзистора пиковый ток протекает через него, через внутренний транзистор протекает меньший (управляющий) ток.

VT 4 внешний биполярный транзистор, ставится в схему, когда расчетный пиковый ток превышает 1.5А (при большом выходном токе). Иначе перегрев микросхемы может привести к выходу ее из строя. Рабочий режим (ток базы транзистора) R 26 , R 28 .

VD 2 – диод Шоттки или ультрабыстрый (ultrafast) диод на напряжение (прямое и обратное) не менее 2U вых

Порядок расчета:

  • Выбирают номинальные входное и выходное напряжения: V in , V out и максимальный

выходной ток I out .

В нашей схеме V in =24В, V out =5В, I out =500мА (максимально 750 мА)

  • Выбирают минимальное входное напряжение V in(min) и минимальную рабочую частоту f min при выбранных V in и I out .

В нашей схеме V in(min) =20В (по ТЗ), выбираем f min =50 кГц

3) Рассчитывают значение (t on +t off) max по формуле (t on +t off) max =1/f min , t on(max) — максимальное время, когда выходной транзистор открыт, t off(max) — максимальное время, когда выходной транзистор закрыт.

(t on +t off) max =1/f min =1/50 кГц =0.02 мС =20 мкС

Рассчитывают отношение t on /t off по формуле t on /t off =(V out +V F)/(V in(min) -V sat -V out) , где V F — падение напряжения на диоде (forward –прямое падение напряжения), V sat — падение напряжения на выходном транзисторе, когда он находится в полностью открытом состоянии (saturation – напряжение насыщения) при заданном токе. V sat определяется по графикам или таблицам, приведенным в документации. Из формулы видно, что чем больше V in , V out и чем больше они отличаются друг от друга — тем меньшее влияние на конечный результат оказывают V F и V sat .

(t on /t off) max =(V out +V F)/(V in(min) -V sat -V out)=(5+0.8)/(20-0.8-5)=5.8/14.2=0.408

4) Зная t on /t off и (t on +t off) max решают систему уравнений и находят t on(max) .

t off = (t on +t off) max / ((t on /t off) max +1) =20 мкС /(0.408+1)=14.2 мкС

t on ( max ) =20- t off =20-14.2 мкС=5.8 мкС

5) Находят емкость времязадающего конденсатора С 11 (Ct ) по формуле:

C 11 = 4.5*10 -5 *t on(max) .

C 11 = 4.5*10 -5 * t on ( max ) =4.5*10 — 5*5.8 мкС=261 pF (это min значение) , берем 680pF

Чем меньше емкость, тем больше частота. Емкости 680pF соответствует частота 14КГц

6) Находят пиковый ток через выходной транзистор: I PK(switch) =2*I out . Если он получился больше максимального тока выходного транзистора (1.5 …1.6 А), то преобразователь с такими параметрами невозможен. Нужно либо пересчитать схему на меньший выходной ток (I out ), либо использовать схему с внешним транзистором.

I PK(switch) =2*I out =2*0.5=1 A (для максимального значения выходного тока 750ма I PK(switch) = 1.4А)

7) Рассчитывают R sc по формуле: R sc =0,3/I PK(switch) .

R sc =0,3/I PK(switch) =0.3/1=0.3 Ом, параллельно соединяем 3 резистора (R 11-12-13 ) по 1 Ом

8) Рассчитывают минимальную емкость конденсатора выходного фильтра: С 17 =I PK(switch) *(t on +t off) max /8V ripple(p-p) , где V ripple(p-p) — максимальная величина пульсаций выходного напряжения. Берется максимальная ёмкость из ближайших к расчетному стандартных значений.

С 17 = I PK ( switch ) *(t on + t off ) max /8 V ripple ( p p ) =1*14.2 мкС/8*50 мВ=50 мкФ, берем 220 мкФ

9) Рассчитывают минимальную индуктивность дросселя:

L 1( min ) = t on ( max ) *(V in ( min ) V sat V out )/ I PK ( switch ) . Если получаются слишком большие C 17 и L 1 , можно попробовать повысить частоту преобразования и повторить расчет. Чем выше частота преобразования — тем ниже минимальная емкость выходного конденсатора и минимальная индуктивность дросселя.

L 1(min) =t on(max) *(V in(min) -V sat -V out)/I PK(switch) =5.8 мкС *(20-0.8-5)/1=82.3 мкГн

Это минимальная индуктивность. Для микросхемы MC34063 дроссель следует выбирать с заведомо большим значением индуктивности, чем расчетное значение. Выбираем L=150мкГн фирмы CoilKraft DO5022.

10) Сопротивления делителя рассчитываются из соотношения V out =1,25*(1+R 24 /R 21) . Эти резисторы должны быть не менее 30 Ом.

Для V out =5В берем R 24 =3.6К, тогда R 21 =1.2К

Онлайн расчет http://uiut.org/master/mc34063/ показывает правильность рассчитанных значений (кроме Сt=С11):

Также есть другой онлайн расчет http://radiohlam.ru/teory/stepdown34063.htm , который также показывает правильность рассчитанных значений.

12) По условиям расчета п.7 пиковый ток 1А (Макс 1.4А) находится около максимального тока транзистора (1.5 …1.6 А) Желательно поставить внешний транзистор уже при пиковом токе 1А, во избежании перегрева микросхемы. Это и сделано. Выбираем транзистор VT4 MJD45 (PNP-тип) с коэффициентом передачи тока 40 (h21э желательно взять максимально возможным, так как транзистор работает в режиме насыщения и на нем падает напряжение порядка =0.8В). Некоторые производители транзисторов указывают в заголовке даташита про малое значение напряжения насыщения Usat порядка 1В, на которое и надо ориентироваться.

Рассчитаем сопротивления резисторов R26 и R28 в цепях выбранного транзистора VT4.

Ток базы транзистора VT4: I б= I PK ( switch ) / h 21 э . I б=1/40=25мА

Резистор в цепи БЭ: R 26 =10*h 21э / I PK ( switch ) . R 26 =10*40/1=400 Ом (берем R 26 =160Ом)

Ток через резистор R 26: I RBE =V BE /R 26 =0.8/160=5мА

Резистор в цепи базы: R 28 =(Vin(min)-Vsat(driver)-V RSC -V BEQ 1)/(I B +I RBE)

R 28 =(20-0.8-0.1-0.8)/(25+5)=610 Ом, можно взять меньше 160 Ом (однотипный с R 26 , так как встроенный транзистор Дарлингтона может обеспечить больший ток для меньшего резистора.

13) Рассчитаем элементы снаббера R 32, C 16. (см расчет повышающей схемы и схему ниже).

14) Рассчитаем элементы выходного фильтра L 5 , R 37, C 24 (Г.Oтт “Методы подавления шумов и помех в электронных системах” стр.120-121).

Выбрал — катушку L5=150мкГн (однотипный дроссель с активным резистивным сопротивлением Rдросс=0.25 ом) и С24=47мкФ (в схеме указано большее значение 100 мкФ)

Рассчитаем декремент затухания фильтра кси =((R+Rдросс)/2)* корень(С/L)

R=R37 ставится когда декремент затухания меньше 0.6, чтобы убрать выброс относительной АЧХ фильтра (резонанс фильтра). Иначе фильтр на этой частоте среза будет усиливать колебания, а не ослаблять.

Без R37: Кси=0.25/2*(корень 47/150)=0.07 — будет подъем АЧХ до +20дб, что плохо, поэтому ставим R=R37=2.2 Ом, тогда:

C R37: Кси=(1+2.2)/2*(корень 47/150)=0.646 — при кси 0.5 и более спад АЧХ (те нет резонанса).

Резонансная частота фильтра (частота среза) Fср=1/(2*пи*L*C), должна лежать ниже частот преобразования микросхемы (те фильтровать эти высокие частоты 10-100кГц). Для указанных значений L и С получим Fср=1896 Гц, что меньше частот работы преобразователя 10-100кГц. Сопротивление R37 более нескольких Ом повыщать нельзя, тк на нем упадет напряжение (при токе нагрузки 500мА и R37=2.2 Ом падение напряжения составит Ur37=I*R=0.5*2.2=1.1В).

Все элементы схемы выбраны для поверхностного монтажа

Осциллограммы работы в различных точках схемы понижающего преобразователя:

15) а) Осциллограммы без нагрузки (Uвх=24в, Uвых=+5В):

Напряжение +5В на выходе преобразователя (на конденсаторе С18) без нагрузки

Сигнал на коллекторе транзистора VT4 имеет частоту 30-40Гц, тк без нагрузки,

схема потребляет около 4 мА без нагрузки

Управляющие сигналы на выв.1 микросхемы (нижний) и

на базе транзистора VT4 (верхний) без нагрузки

б) Осциллограммы под нагрузкой (Uвх=24в, Uвых=+5В), при частотозадающей емкости c11=680pF. Меняем нагрузку путем уменьшения сопротивления резистора (3 осциллограммы ниже). Выходной ток стабилизатора при этом увеличивается, как и входной.

Нагрузка — 3 резистора 68 ом параллельно (221 мА )

Входной ток – 70мА

Желтый луч — сигнал на базе транзистора (управляющий)

Синий луч — сигнал на коллекторе транзистора (выходной)

Нагрузка — 5 резисторов 68 ом параллельно (367 мА )

Входной ток – 110мА

Желтый луч — сигнал на базе транзистора (управляющий)

Синий луч — сигнал на коллекторе транзистора (выходной)

Нагрузка — 1 резистор 10 ом (500 мА )

Входной ток – 150мА

Вывод: в зависимости от нагрузки меняется частота следования импульсов, при большей нагрузке – частота увеличивается, далее паузы (+5В) между фазой накопления и отдачи -пропадают, остаются только прямоугольные импульсы – стабилизатор работает “на пределе” своих возможностей. Это также видно по осциллограмме ниже, когда напряжение “пилы” имеет выбросы – стабилизатор входит в режим ограничения тока.

в) Напряжение на частотозадающей емкости c11=680pF при максимальной нагрузке 500мА

Желтый луч — сигнал емкости (управляющая пила)

Синий луч — сигнал на коллекторе транзистора (выходной)

Нагрузка — 1 резистор 10 ом (500 мА )

Входной ток – 150мА

г) Пульсации напряжения на выходе стабилизатора (с18) при максимальной нагрузке 500мА

Желтый луч — сигнал пульсаций на выходе (с18)

Нагрузка — 1 резистор 10 ом (500 мА )

Пульсации напряжения на выходе LC(R)-фильтра (с24) при максимальной нагрузке 500мА

Желтый луч — сигнал пульсаций на выходе LC(R)-фильтра (с24)

Нагрузка — 1 резистор 10 ом (500 мА )

Вывод: размах напряжений пульсаций от пика до пика уменьшился с 300мВ до 150мВ.

д) Осциллограмма затухающих колебаний без снаббера:

Cиний луч — на диоде без снаббера (видна вставка импульса со временем

не равным периоду, так как это не ШИМ, а ЧИМ)

Осциллограмма затухающих колебаний без снаббера (увеличено):

Расчет повышающего преобразователя (step-up, boost) DC-DC на микросхеме MC34063

http://uiut.org/master/mc34063/ . Для повышающего драйвера он в основном аналогичен расчету понижающего драйвера, поэтому ему можно верить. Схема при онлайн-расчете автоматически меняется на типовую схему из “AN920/D” Входные данные, результаты расчета и сама типовая схема представлены ниже.

— полевой N-канальный транзистор VT7 IRFR220N. Повышает нагрузочную способность микросхемы, позволяет быстро переключаться. Подбирают по:Электрическая схема повышающего преобразователя изображена на рисунке 2. Номера элементов схемы соответствуют последнему варианту cхемы (из файла “Driver of MC34063 3in1 – ver 08.SCH”). В схеме есть элементы, которых нет на типовой схеме онлайн расчета. Это следующие элементы:

  • Максимальному напряжению сток-исток V DSS = 200В , тк высокое напряжение на выходе +94В
  • Малому падению напряжения канала R DS(on) max =0.6 O м. Чем меньше сопротивление канала, тем меньше потери на нагрев и выше кпд.
  • Малой емкости (входной), которая определяет заряда затвора Qg (Total Gate Charge) и малый входной ток затвора. Для данного транзистора I =Qg* Fsw =15нКл *50 КГц=750мкА .
  • Максимальному току стока I d =5А , тк импульсный ток Ipk=812 mA при выходном токе 100мА

— элементы делителя напряжения R30, R31 и R33 (снижает напряжение для затвора VT7, которое должно быть не более V GS =20В)

— элементы разряда входной емкости VT7 – R34, VD3, VT6 при переключении транзистора VT7 в закрытое состояние. Уменьшает время спада на затворе VT7 с 400нС (не показана) до 50 нС (осциллограмма со временем спада 50нС). Лог 0 на выв.2 микросхемы открывает PNP-транзистор VT6 и входная затворная емкость разряжается через переход КЭ VT6 (быстрее, чем просто через резистор R33, R34).

— катушка L при расчете получается очень большой, выбран меньший номинал L=L4(рис.2)=150мкГн

— элементы снаббера С21, R36.

Расчет снаббера:

Отсюда L=1/(4*3.14^2*(1.2*10^6)^2*26*10^-12)=6.772*10^4 Rsn=√(6.772*10^4 /26*10^-12)=5.1КОм

Величина ёмкости снаббера обычно является компромиссным решением, поскольку, с одной стороны, чем больше ёмкость — тем лучше сглаживание (меньше число колебаний), с другой стороны, каждый цикл ёмкость перезаряжается и рассеивает через резистор часть полезной энергии, что сказывается на КПД (обычно, нормально рассчитанный снаббер снижает КПД очень незначительно, в пределах пары процентов).

Путем постановки переменного резистора, определили более точно сопротивление R =1 K

Рис.2 Схема электрическая принципиальная повышающего (step-up, boost) драйвера.

Осциллограммы работы в различных точках схемы повышающего преобразователя:

а) Напряжение в различных точках без нагрузки :

Напряжение на выходе — 94В без нагрузки

Напряжение на затворе без нагрузки

Напряжение на стоке без нагрузки

б) напряжение на затворе (желтый луч) и на стоке (синий луч) транзистора VT7:

на затворе и на стоке под нагрузкой изменяется частота с 11кГц(90мкс) до 20кГц(50мкс) — те это не ШИМ, а ЧИМ

на затворе и на стоке под нагрузкой без снаббера (растянуто — 1 период колебания)

на затворе и на стоке под нагрузкой со снаббером

в) передний и задний фронт напряжение выв.2 (желтый луч) и на затворе (синий луч) VT7, пила выв.3:

синий — время нарастания 450 нс на затворе VT7

Желтый — время нарастания 50 нс на выв 2 микросхемы

синий — время нарастания 50 нс на затворе VT7

пила на Ct (выв.3 ИМС) c выбросом регулирования F=11k

Расчет DC-DC инвертера (step-up/step-down, inverter) на микросхеме MC34063

Расчет также ведется по типовой методике “AN920/D” от ON Semiconductor.

Расчет можно вести сразу “онлайн” http://uiut.org/master/mc34063/ . Для инвертирующего драйвера он в основном аналогичен расчету понижающего драйвера, поэтому ему можно верить. Схема при онлайн-расчете автоматически меняется на типовую схему из “AN920/D” Входные данные, результаты расчета и сама типовая схема представлены ниже.

— биполярный PNP-транзистор VT7 (повышает нагрузочную способность)Электрическая схема инвертиртирующего преобразователя изображена на рисунке 3. Номера элементов схемы соответствуют последнему варианту cхемы (из файла “Driver of MC34063 3in1 – ver 08.SCH”). В схеме есть элементы, которых нет на типовой схеме онлайн расчета. Это следующие элементы:

— элементы делителя напряжения R27, R29 (задает ток базы и режим работы VT7),

— элементы снаббера С15, R35 (подавляет нежелательные колебания от дросселя)

Некоторые компоненты отличаются от расчетных:

  • катушка L взята меньше расчетного значения L=L2 (рис.3)=150мкГн (однотипность всех катушек)
  • выходная емкость взята меньше расчетной С0=С19=220мкФ
  • частотозадающий конденсатор взят С13=680пФ, соответствует частоте 14КГц
  • резисторы делителя R2=R22=3.6К, R1=R25=1.2К (взяты сначала для выходного напряжения -5В) и окончательные резисторы R2=R22=5.1 К, R1=R25=1.2К (выходного напряжения -6.5В)

ограничительный резистор тока взят Rsc – 3 резистора параллельно по 1 Ом (результирующее сопротивление 0.3Ом)

Рис.3 Схема электрическая принципиальная инвертера (step-up/step-down, inverter) .

Осциллограммы работы в различных точках схемы инвертера:

a) при входном напряжении +24В без нагрузки :

на выходе -6.5В без нагрузки

на коллекторе – накопление и отдача энергии без нагрузки

на выв.1 и базе транзистора без нагрузки

на базе и коллекторе транзистора без нагрузки

пульсации на выходе без нагрузки

Рассмотрим типовую схему повышающего DC/DC конвертера на микросхемах 34063:

Выводы микросхемы:

  1. SWC (switch collector) — коллектор выходного транзистора
  2. SWE (switch emitter) — эмиттер выходного транзистора
  3. Tc (timing capacitor) — вход для подключения времязадающего конденсатора
  4. GND — земля
  5. CII (comparator inverting input) — инвертирующий вход компаратора
  6. Vcc — питание
  7. Ipk — вход схемы ограничения максимального тока
  8. DRC (driver collector) — коллектор драйвера выходного транзистора (в качестве драйвера выходного транзистора также используется биполярный транзистор)

Элементы:

L 1 — накопительный дроссель. Это, в общем-то, элемент преобразования энергии.

С 1 — времязадающий конденсатор, он определяет частоту преобразования. Максимальная частота преобразования для микросхем 34063 составляет порядка 100 кГц.

R 2 , R 1 — делитель напряжения для схемы компаратора. На неинвертирующий вход компаратора подается напряжение 1,25 В от внутреннего регулятора, а на инвертирующий вход — с делителя напряжения. Когда напряжение с делителя становится равным напряжению от внутреннего регулятора — компаратор переключает выходной транзистор.

C 2 , С 3 — соответственно, выходной и входной фильтры. Емкость выходного фильтра определяет величину пульсаций выходного напряжения. Если в процессе расчётов получается, что для заданной величины пульсаций требуется очень большая емкость, можно расчет сделать для бо’льших пульсаций, а потом использовать дополнительный LC-фильтр. Ёмкость С 3 обычно берут 100 … 470 мкФ.

R sc — токочувствительный резистор. Он нужен для схемы ограничения тока. Максимальный ток выходного транзистора для MC34063 = 1.5А, для AP34063 = 1.6А. Если пиковый переключаемый ток будет превышать эти значения, то микросхема может сгореть. Если точно известно, что пиковый ток даже близко не подходит к максимальным значениям, то этот резистор можно не ставить.

R 3 — резистор, ограничивающий ток драйвера выходного транзистора (максимум 100 мА). Обычно берется 180, 200 Ом.

Порядок расчёта:

  1. Выбирают номинальные входное и выходное напряжения: V in , V out и максимальный выходной ток I out .
  2. 2) Выбирают минимальное входное напряжение V in(min) и минимальную рабочую частоту f min при выбранных V in и I out .
  3. Рассчитывают значение (t on +t off) max по формуле (t on +t off) max =1/f min , t on(max) — максимальное время, когда выходной транзистор открыт, t off(max) — максимальное время, когда выходной транзистор закрыт.
  4. Рассчитывают отношение t on /t off по формуле t on /t off =(V out +V F -V in(min))/(V in(min) -V sat) , где V F — падение напряжения на выходном фильтре, V sat — падение напряжения на выходном транзисторе (когда он находится в полностью открытом состоянии) при заданном токе. V sat определяется по графикам, приведенным в документации на микросхему (или на транзистор, если схема с внешним транзистором). Из формулы видно, что чем больше V in , V out и чем больше они отличаются друг от друга — тем меньшее влияние на конечный результат оказывают V F и V sat , так что если вам не нужен суперточный расчет, то я бы посоветовал, уже при V in(min) =6-7 В, смело брать V F =0, V sat =1,2 В (обычный, средненький биполярный танзистор) и не заморачиваться.
  5. Зная t on /t off и (t on +t off) max решают систему уравнений и находят t on(max) .
  6. Находят емкость времязадающего конденсатора С 1 по формуле: C 1 = 4.5*10 -5 *t on(max) .
  7. Находят пиковый ток через выходной транзистор: I PK(switch) =2*I out *(1+t on /t off) . Если он получился больше максимального тока выходного транзистора (1.5 …1.6 А), то преобразователь с такими параметрами невозможен. Нужно либо пересчитать схему на меньший выходной ток (I out ) , либо использовать схему с внешним транзистором.
  8. Рассчитывают R sc по формуле: R sc =0,3/I PK(switch) .
  9. Рассчитывают минимальную емкость конденсатора выходного фильтра:
  10. С 2 =I out *t on(max) /V ripple(p-p) , где V ripple(p-p) — максимальная величина пульсаций выходного напряжения. Разные производители рекомендуют умножать полученное значение на коэффициент от 1 до 9. Берётся максимальная ёмкость из ближайших к расчётному стандартных значений.
  11. Рассчитывают минимальную индуктивность дросселя:

    L 1(min) =t on(max) *(V in(min) -V sat)/I PK(switch) . Если получаются слишком большие C 2 и L 1 , можно попробовать повысить частоту преобразования и повторить расчет. Чем выше частота преобразования — тем ниже минимальная емкость выходного конденсатора и минимальная индуктивность дросселя.

  12. Сопротивления делителя рассчитываются из соотношения V out =1,25*(1+R 2 /R 1) .

Online-калькулятор для расчёта преобразователя :

(для правильности расчётов используйте в качестве десятичной точки точку, а не запятую)

1) Исходные данные:

(если вы не знаете значения V sat , V f , V ripple(p-p) , то расчёт будет сделан для V sat =1.2 В, V f =0 В, V ripple(p-p) =50 мВ)

Идея создания этого преобразователя возникла у меня после покупки нетбука Asus EeePC 701 2G. Маленький, удобный, гораздо мобильнее огромных ноутбуков, в общем, красота, да и только. Одна проблема — надо постоянно подзаряжать. А поскольку единственный источник питания, который всегда под рукой — это автомобильный аккумулятор, то естественно возникло желание заряжать нетбук от него. В ходе экспериментов обнаружилось, что сколько нетбуку не дай, — больше 2 ампер он все равно не возьмет, то есть регулятор тока, как в случае зарядки обычных аккумуляторов, нафиг не нужен. Красота, нетбук сам разрулит сколько тока потреблять, следовательно, нужен просто мощный понижающий преобразователь с 12 на 9,5 вольт, способный
выдать нетбуку требуемые 2 ампера.

За основу преобразователя была взята хорошо известная и широко доступная микросхема MC34063. Поскольку в ходе экспериментов типовая схема с внешним биполярным транзистором зарекомендовала себя мягко скажем не очень (греется), было решено прикрутить к этой микрухе p-канальный полевик (MOSFET).

Схема :

Катушку на 4..8 мкГн можно взять со старой материнской платы. Видели, там есть кольца, на которых толстыми проводами по несколько витков намотано? Ищем такую, на которой 8..9 витков одножильным толстым проводом — как раз самое то.

Все элементы схемы рассчитываются по , так же, как и для преобразователя без внешнего транзистора, единственное отличие — V sat нужно посчитать для используемого полевого транзистора. Сделать это очень просто: V sat =R 0 *I, где R 0 — сопротивление транзистора в открытом состоянии, I — протекающий через него ток. Для IRF4905 R 0 =0,02 Ом, что при токе 2,5А дает Vsat=0,05В. Что называется, почувствуйте разницу. Для биполярного транзистора эта величина составляет не менее 1В. Как следствие — рассеиваемая мощность в открытом состоянии в 20 раз меньше и минимальное входное напряжение схемы на 2 вольта меньше!

Как мы помним, для того, чтобы р-канальный полевик открылся — надо подать на затвор отрицательное относительно истока напряжение (то есть подать на затвор напряжение, меньше напряжения питания, т.к. исток у нас подключен к питанию). Для этого нам и нужны резисторы R4, R5. Когда транзистор микросхемы открывается — они образуют делитель напряжения, который и задает напряжение на затворе. Для IRF4905 при напряжении исток-сток 10В для полного открытия транзистора достаточно подать на затвор напряжение на 4 вольта меньше напряжения истока (питания), U GS = -4В (хотя вообще-то правильнее посмотреть по графикам в даташите на транзистор сколько нужно конкретно при вашем токе). Ну и кроме того, сопротивления этих резисторов определяют крутизну фронтов открытия и закрытия полевика (чем меньше сопротивление резисторов — тем круче фронты), а также протекающий через транзистор микросхемы ток (он должен быть не более 1,5А).

Готовый девайс :

В общем-то, радиатор можно было даже поменьше взять — преобразователь греется незначительно. КПД данного устройства около 90% при токе 2А.

Вход соединяете с вилкой для прикуривателя, выход — со штекером для нетбука.

Если не страшно, то можете вместо резистора R sc просто поставить перемычку, как видите, лично я так и сделал, главное ничего не коротнуть, а то бумкнет 🙂

Кроме того, хотелось бы добавить, что типовая методика совсем не идеальна в плане расчётов и ничего не объясняет, поэтому если вы хотите реально понять как всё это работает и как правильно рассчитывается, то рекомендую прочитать .

Очень часто встаёт вопрос о том, как получить требуемое для схемы питание напряжение, имея источник с отличным от требуемого напряжения. Такие задачи делятся на две: когда: нужно уменьшить или увеличить напряжение до заданного. В этой статье будет рассмотрен первый вариант.

Как правило, можно применить линейный стабилизатор , но у него будут большие потери по мощности, т.к. разность в напряжениях он будет преобразовывать в тепло. Здесь на помощь приходят импульсные преобразователи. Вашему вниманию предлагается простенький и компактный преобразователь на MC34063.

Эта микросхема очень универсальна, на ней можно реализовывать понижающие, повышающие и инвертирующие преобразователи с максимальным внутренним током до 1,5А. Но в статье рассмотрен только понижающий преобразователь, остальные будут рассмотрены позже.

Размеры получившегося преобразователя – 21х17х11 мм. Такие размеры получилось из-за использования совместно выводных и SMD деталей. Преобразователь содержит всего 9 деталей.

Детали в схеме рассчитаны на 5В с ограничение тока 500мА, с пульсацией 43кГц и 3мВ. Входное напряжение может быть от 7 до 40 вольт.

За выходное напряжение отвечают резисторный делитель на R2 и R3, если их заменить подстроечным резистором где-то на 10 кОм, то можно будет задавать требуемое выходное напряжение. За ограничение тока отвечает резистор R1. За частоту пульсаций отвечают конденсатор C1 и катушка L1, за уровень пульсаций конденсатор C3. Диод может быть заменён на 1N5818 или 1N5820. Для расчёта параметров схемы есть специальный калькулятор - http://www.nomad.ee/micros/mc34063a/index.shtml , где стоит только задать требуемые параметры, он так же может рассчитать схемы и параметры преобразователей нерассмотренных двух типов.

Было изготовлено 2 печатные платы: слева – с делителем напряжения на делителе напряжения, выполненном на двух резисторов типоразмера 0805, справа с переменным резистором 3329H-682 6,8кОм. Микросхема MC34063 в корпусе DIP, под ней два чип танталовых конденсатора типоразмера – D. Конденсатор C1 –типоразмера 0805, диод выводной, резистор ограничения тока R1 – на пол вата, при малых токах, меньше 400 мА, можно поставить резистор меньшей мощности. Индуктивность CW68 22мкГн, 960мА.

Осциллограммы пульсаций, R огранич = 0,3 Ом

На этих осциллограммах показаны пульсации: слева – без нагрузки, справа – с нагрузкой в виде сотового телефона, ограничивающий резистор 0,3 Ом, снизу с той же нагрузкой, но ограничивающий резистор на 0,2 Ом.

Осциллограмма пульсации, R огранич = 0,2 Ом

Снятые характеристики (замерены не все параметры), при входном напряжении 8,2 В.

Этот адаптер был изготовлен для подзарядки сотового телефона и питания цифровых схем в походных условиях.

В статье была приведена плата с переменным резистором в качестве делителя напряжения, размешаю к ней и соответствующею схему, отличие от первой схемы только в делителе.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.