Независимость интеграла второго рода от пути интегрирования. Условия независимости криволинейного интеграла II рода от пути интегрирования

Пусть дано плоское векторное поле . В дальнейшем мы будем предполагать, что функции Р и Q непрерывны вместе со своими производными и в некоторой области О плоскости

Рассмотрим в области G две произвольные точки Эти точки можно соединить различными линиями, лежащими в области вдоль которых значения криволинейного интеграла вообще говоря, различны.

Так, например, рассмотрим криволинейный интеграл

и две точки . Вычислим этот интеграл, во-первых, вдоль отрезка прямой , соединяющей точки А и В, и, во-вторых, вдоль дуги параболы соединяющей эти же точки. Применяя правила вычисления криволинейного интеграла, найдем

а) вдоль отрезка

б) вдоль дуги параболы:

Таким образом, мы видим, что значения криволинейного интеграла зависят от пути интегрирования, т. е. зависят от вида линии, соединяющей точки А и В. Наоборот, как нетрудно проверить, криволинейный интеграл вдоль тех же линий , соединяющих точки дает одно и то же значение, равное .

Разобранные примеры показывают, что криволинейные интегралы, вычисленные по различным путям, соединяющим две данные точки, в одних случаях различны между собой, а в других случаях принимают одно и то же значение.

Пусть А и В - две произвольные точки области G. Рассмотрим различные кривые, лежащие в области G и соединяющие точки А и В.

Если криволинейный интеграл по любому из этих путей принимает одно и то же значение, то говорят, что он не зависит от пути интегрирования.

В следующих двух теоремах приводятся условия, при которых криволинейный интеграл не зависит от пути интегрирования.

Теорема 1. Для того чтобы криволинейный интеграл в некоторой области G не зависел от пути интегрирования, необходимо и достаточно, чтобы интеграл по любому замкнутому контуру, лежащему в этой области, был равен нулю.

Доказательство. Достаточность.

Пусть интеграл по любому замкнутому контуру, проведенному в области G, равен нулю. Покажем, что этот интеграл не зависит от пути интегрирования. В самом деле, пусть А и В две точки, принадлежащие области G. Соединим эти точки двумя различными, произвольно выбранными кривыми лежащими в области G (рис. 257).

Покажем, что дуги образуют замкнутый контур Учитывая свойства криволинейных интегралов, получим

так как . Но по условию как интеграл по замкнутому контуру.

Следовательно, или Таким образом, криволинейный интеграл не зависит от пути интегрирования.

Необходимость. Пусть в области G криволинейный интеграл не зависит от пути интегрирования. Покажем, что интеграл по любому замкнутому контуру, лежащему в этой области, равен нулю. В самом деле, рассмотрим произвольный замкнутый контур, лежащий в области G, и возьмем на нем две произвольные точки А я В (см. рис. 257). Тогда

так как по условию . Итак, интеграл по любому замкнутому контуру L, лежащему в области G, равен нулю.

Следующая теорема дает удобные для практического использования условия, при соблюдении которых криволинейный интеграл не зависит от пути интегрирования.

Теорема 2.

Для того чтобы криволинейный интеграл не зависел от пути интегрирования в односвязной области необходимо и достаточно, чтобы в каждой точке этой области выполнялось условие

Доказательство. Достаточность. Пусть в области Покажем, что криволинейный интеграл по любому замкнутому контуру L, лежащему в области G, равен нулю. Рассмотрим площадку а, ограниченную контуром L. В силу односвязности области G площадка а целиком принадлежит этой области. На основании формулы Остроградского-Грина частности, на площадке Поэтому а следовательно, . Итак, интеграл по любому замкнутому контуру L в области G равен нулю. На основании теоремы 1 заключаем, что криволинейный интеграл не зависит от пути интегрирования.

Необходимость. Пусть криволинейный интеграл не зависит от пути интегрирования в некоторой области Q. Покажем, что во всех точках области

Предположим противное, т. е. что в некоторой точке области Пусть для определенности . В силу предположения о непрерывности частных производных и разность будет непрерывной функцией. Следовательно, около точки можно описать круг а (лежащий в области G), во всех точках которого, как и в точке разность будет положительной. Применим к кругу формулу Остроградского-Грина.

Формула Остроградского - Грина

Эта формула устанавливает связь между криволинейным интегралом по замкнутому контуры С и двойным интегралом по области, ограниченной этим контуром.

Определение 1. Область D называется простой областью, если её можно разбить на канечное число областей первого типа и независимо от этого на конечное число областей второго типа.

Теорема 1. Пусть в простой области определены функции P(x,y) и Q(x,y) непрерывные вместе со своими частными производными и

Тогда имеет место формула

где С - замкнутый контур области D.

Это формула Остроградского - Грина.

Условия независимости криволинейного интеграла от пути интегрирования

Определение 1. Говорят, что замкнутая квадрируемая область D односвязна, если любую замкнутую кривую l D можно непрерывно диформировать в точку так, что все точки этой кривой принадлежали бы области D (область без “дырок” - D 1), если такое деформирование невозможно, то область назывется многосвязной (с “дырками” - D 2).

Определение 2. Если значение криволинейного интеграла по кривой АВ не зависит от вида кривой, соединяющей точки А и В, то говорят, что этот криволинейный интеграл не зависит от пути интегрирования:

Теорема 1. Пусть в замкнутой односвязной области D определены непрерывные, вместе со своими частными производными функции P(x,y) и Q(x,y). Тогда следующие 4 условия равносильны (эквивалентны):

1) криволинейный интеграл по замкнутому контуру

где С - любой замкнутый контур в D;

2) криволинейный интеграл по замкнутому контуру не зависит от пути интегрирования в области D, т.е.

3) дифференциальная форма P(x,y)dx + Q(x,y)dy является полным дифференциалом некоторой функции F в области D, т.е., что существует функция F такая, что (х,у) D имеет место равенство

dF(x,y) = P(x,y)dx + Q(x,y)dy; (3)

4) для всех точек (х,у) D будет выполняться следующее условие:

Докажем по схеме.

Докажем, что из.

Пусть дано 1), т.е. = 0 по свойству 2 §1, что = 0 (по свойству 1 §1) .

Докажем, что из.

Дано, что кр.инт. не зависит от пути интегрирования, а только от выбора начала и канца пути

Рассмотрим функцию

Пакажем, что дифференциальная форма P(x,y)dx + Q(x,y)dy является полным дифференциалом функции F(x,y), т.е. , что

Зададим частный прирост

х F (x,y)= F(х + х, у) -F (x,y)= = == =

(по свойству 3 § 1, ВВ* Оу) = = P (c,y)х (по теореме о среднем, с -const), где x

(всилу непрерывности функции Р). Получили формулу (5). Аналогично получается формула (6).

Докажем, что из.

Дана формула

dF(x,y) = P(x,y)dx + Q(x,y)dy.

Очевидно, что = Р(х,у). Тогда

По условию теоремы правые части равенств (7) и (8) непрерывные функции, то по теореме о равенстве смешанных производных будут равны и левые части, т.е.., что

Докажем, что из 41.

Выберем любой замкнутый контур из области D, который ограничивает область D 1 .

Функции P и Q удовлетворяют условиям Остроградского-Грина:

В силу равенства (4) в левой части (9) интеграл равен 0, а это значит, что и правая часть равенства равна

Замечание 1. Теорема 1. может быть сформулировано в виде трёх самостоятельных теорем

Теорема 1*. Для того, чтобы в односвязной квадрируемой области D крив.инт. не зависил от пути интегрирования чтобы выполнялось условие (.1), т.е.

Теорема 2*. Для того, чтобы в односвязной квадрируемой области D крив.инт. не зависил от пути интегрирования чтобы выполнялось условие (3):

дифференциальная форма P(x,y)dx + Q(x,y)dy является полным дифференциалом некоторой функции F в области D.

Теорема 3*. Для того, чтобы в односвязной квадрируемой области D крив.инт. не зависил от пути интегрирования чтобы выполнялось условие (4):

Замечание 2. В теореме2* область D может быть и многосвязной.

Лекция 4

Тема: Формула Грина. Условия независимости криволинейного интеграла от пути интегрирования.

Формула Грина.

Формула Грина устанавливает связь между криволинейным интегралом по замкнутому контуру Г на плоскости и двойным интегралом по области, ограниченной данным контуром.

Криволинейный интеграл по замкнутому контуру Г обозначается символом Замкнутый контур Г начинается в некоторой точке В этого контура и заканчивается в точке В. Интеграл по замкнутому контуру не зависит от выбора точки В.

Определение 1 . Обход контура Г считается положительным, если при обходе контура Г область D остаётся слева. Г + - контур Г обходится в положительном направлении, Г - - контур обходится в отрицательном направлении т.е. в противоположном направлении

Г +
X
Y
c
d
X= x 1 (y)
X= x 2 (y)
a
b
B
C
Y= y 2 (x)
Y= y 1 (x)
m
n
Рассмотрим двойной интеграл

.

Аналогично доказывается, что:

Из равенств (1) и (2) получаем:

Следовательно,

Формула Грина при сделанных предположениях доказана.

Замечание 1 . Формула Грина остаётся справедливой, если граница Г области D некоторыми прямыми, параллельными оси 0Х или 0Y пересекается более чем в двух точках. Кроме этого формула Грина справедлива и для n-связных областей.

Условия независимости криволинейного интеграла от пути интегрирования на плоскости.

В этом параграфе выясним условия, при выполнении которых криволинейный интеграл не зависит от пути интегрирования, а зависит от начальной и конечной точек интегрирования.

Теорема 1 . Для того, чтобы криволинейный интеграл не зависел от пути интегрирования в односвязной области необходимо и достаточно, чтобы этот интеграл, взятый по любому замкнутому кусочно-гладкому контуру в этой области равнялся нулю.

Доказательство: Необходимость. Дано: не зависит от пути интегрирования. Требуется доказать, что криволинейный интеграл по любому замкнутому кусочно-гладкому контуру равен нулю.

Пусть в рассматриваемой области D взят произвольный кусочно-гладкий замкнутый контур Г. На контуре Г возьмем произвольные точки B и C.

Г
D
n
m
B
C
Так как не зависит от пути интегрирования, то

, т.е.

Достаточность . Дано: Криволинейный интеграл по любому замкнутому кусочно-гладкому контуру равен нулю.

Требуется доказать, что интеграл не зависит от пути интегрирования.

Рассмотрим криволинейный интеграл по двум кусочно-гладким контурам, соединяющим точки B и С. По условию:

Т.е. криволинейный

интеграл не зависит от пути интегрирования.

Теорема 2. Пусть непрерывны вместе с частными производными и в односвязной области D. Для того, чтобы криволинейный интеграл не зависел от пути интегрирования необходимо и достаточно, чтобы в области D выполнялось тождество

Доказательство: Достаточность. Дано: . Требуется доказать, что не зависит от пути интегрирования. Для этого достаточно доказать, что равен нулю по любому замкнутому кусочно-гладкому контуру. По формуле Грина имеем:

Необходимость. Дано: По теореме 1 криволинейный интеграл не зависит от пути интегрирования. Требуется доказать, что

2-го рода от пути интегрирования

Рассмотрим криволинейный интеграл 2-го рода, где L - кривая, соединяющая точки M и N. Пусть функции P(x, y) и Q(x, y) имеют непрерывные частные производные в некоторой области D, в которой целиком лежит кривая L. Определим условия, при которых рассматриваемый криволинейный интеграл зависит не от формы кривой L, а только от расположения точек M и N.

Проведем две произвольные кривые MSN и MTN, лежащие в области D и соединяющие точки M и N (рис.14).

Предположим, что, то есть

где L - замкнутый контур, составленный из кривых MSN и NTM (следовательно, его можно считать произвольным). Таким образом, условие независимости криволинейного интеграла 2-го рода от пути интегрирования равносильно условию, что такой интеграл по любому замкнутому контуру равен нулю.

Теорема 5 (теорема Грина). Пусть во всех точках некоторой области D непрерывны функции P(x, y) и Q(x, y) и их частные производные и. Тогда для того, чтобы для любого замкнутого контура L, лежащего в области D, выполнялось условие

необходимо и достаточно, чтобы = во всех точках области D.

Доказательство.

1) Достаточность: пусть условие = выполнено. Рассмотрим произвольный замкнутый контур L в области D, ограничивающий область S, и напишем для него формулу Грина:

Итак, достаточность доказана.

2) Необходимость: предположим, что условие выполнено в каждой точке области D, но найдется хотя бы одна точка этой области, в которой - ? 0. Пусть, например, в точке P(x0, y0) имеем: - > 0. Так как в левой части неравенства стоит непрерывная функция, она будет положительна и больше некоторого? > 0 в некоторой малой области D`, содержащей точку Р. Следовательно,

Отсюда по формуле Грина получаем, что

где L` - контур, ограничивающий область D`. Этот результат противоречит условию. Следовательно, = во всех точках области D, что и требовалось доказать.

Замечание 1. Аналогичным образом для трехмерного пространства можно доказать, что необходимыми и достаточными условиями независимости криволинейного интеграла

от пути интегрирования являются:

Замечание 2. При выполнении условий (52) выражение Pdx + Qdy +Rdz является полным дифференциалом некоторой функции и. Это позволяет свести вычисление криволинейного интеграла к определению разности значений и в конечной и начальной точках контура интегрирования, так как

При этом функцию и можно найти по формуле

где (x0, y0, z0) - точка из области D, a C - произвольная постоянная. Действительно, легко убедиться, что частные производные функции и, заданной формулой (53), равны P, Q и R.

Пример 10.

Вычислить криволинейный интеграл 2-го рода

по произвольной кривой, соединяющей точки (1, 1, 1) и (2, 3, 4).

Убедимся, что выполнены условия (52):

Следовательно, функция и существует. Найдем ее по формуле (53), положив x0 = y0 = z0 = 0. Тогда

Таким образом, функция и определяется с точностью до произвольного постоянного слагаемого. Примем С = 0, тогда u = xyz. Следовательно,

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.