Название способа задания функции формулой. Функции

Основной признак функциональной зависимости между двумя переменными величинами - это наличие соответствия между значениями этих величин: каждому допустимому значению одной переменной соответствует строго определённое значение другой.

Функция считается заданной, как только установлено соответствие между двумя переменными. Это соответствие может быть установлено различными способами. Рассмотрим подробнее три из них: аналитический, табличный и графический.

Аналитический способ

Аналитический способ - это способ задания функции с помощью формулы.

Например, формула y = x - 2 показывает, как с помощью значения аргумента x вычислить соответствующее ему значение функции y .

Табличный способ

Табличный способ - это способ задания функции с помощью таблицы со значениями.

Например, если измерять температуру воздуха каждый час в течении суток, то каждому часу (t ) будет соответствовать определённая температура (T ). Такое соответствие можно записать в виде таблицы:

Следовательно, T функция от t - T (t ) , определённая с помощью множества целых чисел от 0 до 24 и заданная таблицей. Соответствие между величинами двух переменных задаётся в данном случае не формулой, а таблицей.

Графический способ

Графический способ - это способ задания функции с помощью графика. В этом случае аргумент является абсциссой точки, а значение функции, соответствующее данному аргументу, ординатой.

Графики позволяют быстро находить значение функции по значению аргумента и наоборот - значение аргумента по значению функции. Например, рассмотрим уже готовый график функции:

Чтобы узнать, какое значение функции будет соответствовать аргументу x = 1, надо провести из соответствующей точки оси абсцисс (оси x ) перпендикуляр на график. Ордината точки пересечения перпендикуляра с графиком (точки M ) и будет соответствующим значением функции. Поэтому, так как точка M имеет координаты (1; 2), то запись этих значений в виде функции будет выглядеть так: y (1) = 2.

Лекция: Понятие функции. Основные свойства функции.

Преподаватель: Горячева А.О.

О. : Правило (закон) соответствия между множествами X и Y, по которому для каждого элемента из множества X можно найти один и только один элемент из множества Y, называется функцией .

Функция считается заданной, если:

Задана область определения функции X ;

Задана область значений функции Y ;

Известно правило (закон) соответствия, причем такое, что для каждого значения аргумента может быть найдено только одно значение функции. Это требование однозначности функции является обязательным.

О. : Множество X всех допустимых действительных значений аргументаx, при которых функция y = f (x) определена, называется областью определения функции .

Множество Y всех действительных значений y, которые принимает функция, называется областью значений функции .

Рассмотрим некоторые способы задания функций.

Табличный способ . Довольно распространенный, заключается в задании таблицы отдельных значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

Графический способ . Графиком функции y = f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению.

Графический способ задания функции не всегда дает возможность точно определить численные значения аргумента. Однако он имеет большое преимущество перед другими способами - наглядность. В технике и физике часто пользуются графическим способом задания функции, причем график бывает единственно доступным для этого способом.

Аналитический способ . Чаще всего закон, устанавливающий связь между аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим.

Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью.

Словесный способ . Этот способ состоит в том, что функциональная зависимость выражается словами.

Пример 1: функция E(x) - целая часть числа x. Вообще через E(x) = [x] обозначают наибольшее из целых чисел, которое не превышает x. Иными словами, если x = r + q, где r - целое число (может быть и отрицательным) и q принадлежит интервалу = r. Функция E(x) = [x] постоянна на промежутке = r.

Пример 2: функция y = {x} - дробная часть числа. Точнее y ={x} = x - [x], где [x] - целая часть числа x. Эта функция определена для всех x. Если x - произвольное число, то представив его в виде x = r + q (r = [x]), где r - целое число и q лежит в интервале ; 2) (- ;-2] ; 4) [-2;0]

5. Найдите все значения х, при которых функция принимает отрицательные значения (рис. д):

1) (-2;0); 2) [-6;6]; 3) (- ;0); 4) (- ;0) (0;+ )


е) ж)

6. Найдите все значения х, при которых функция принимает неотрицательные значения (рис. е):

1) (рис. и).

1)-1

2) 3

3) 5

4) 6

з) и)

9. При каких значениях аргумента y<0 (рис. к)?

1) [-4;0); 2) (-3;0); 3) (-3;1); 4) (0;1)



к) л)

10. При каких значениях х значение функции положительно (рис. л)?

Определение: Если каждому элементух множестваХ по какому-либо законуf (или по определенному правилуf ) ставится в соответствие единственный элементу из множестваУ , то говорят, что заданафункциональная зависимость у отх по законуy = f (x ) илифункция y = f (x ).

При этом х называетсянезависимой переменной (илиаргументом ),у – зависимой переменной (илизначением функции ). МножествоХ называетсяобластью определения (илиобластью существования ) функции и обозначаетсяD (f ) , множествоУ называетсяобластью значений функции и обозначаетсяЕ(f ).

Если множество Х не оговорено, то под областью определения функции подразумевается область допустимых значений независимой переменнойх , при котом формула имеет смысл. Например, для.

Задать функцию – значит, указать законf или правило, позволяющее, знаях .находить соответствующее значениеу .

Способы задания функции :

1. Аналитический – если функция задана с помощью формулы. Наиболее удобный способ для математического анализа, позволяющий исследовать функцию.

2. Табличный – если задана таблица значений функции, соответствующих определенным значением аргумента. Этот способ имеет широкое применение в экономике: экспериментальные измерения, таблицах бухгалтерской отчетности, банковской деятельности, статистических данных и т.п.

3. Графический – если задан график. Этот способ обычно используется с употреблением самопишущих приборов (осциллографы, сейсмографы и т.п.). В экономике используются графики, характеризующие динамику экономических параметров: объема ВВП, выручки, курсы валют, курса акций и т.п.

4. Словесный – если функция описывается правилом, составления, например, функция Дирихле:f (x )=1 , если x – рационально и f (x )=0 , если x - иррационально.

Основные свойства функций

1. Четность и нечетность

Функция y = f (x ) называетсячетной , еслих D(f) выполняются условия:--х D(f) иf(-х) =f(х); нечетной, еслих D(f) выполняются условия: х D(f) иf(-х) = f(х).

При этом D(f) называетсясимметричной относительно О(0;0). График четной функции симметричен относительно Оу, а график нечетной – относительно О(0;0).

2. Монотонность

Функция называется возрастающей на промежуткеI D(f) , есливыполняется условие:
инеубывающей , если
. Функция называетсяубывающей на промежуткеI D(f) , есливыполняется условие:
иневозрастающей , если
.

Например,f убывает прих (a;b) , не убывает прих (b;с) и возрастает прих (с; d )

Возрастающие, неубывающие, убывающие и невозрастающие функции на промежутке I D(f) называютсямонотонными на этом промежутке, а возрастающие и убывающие –строго монотонными .

3. Ограниченность

Функция называется ограниченной на множествеD(f) , если существует такое число М>0, чтох D(f) выполняется неравенство
. Или коротко:

Графики таких функций ограничены прямыми
. Например,у= sin x ограничена прямыми
.

4. Периодичность

Функция называется периодической на множествеD(f) , если существует такое числоT>0, чтох D(f) значение(х+Т) D(f) иf (x + T )= f (x ) .

Число Т называется периодом функции. Если Т – период, тоnTтакже является периодом, гдеn=±1;±2;…

Например, функция у= sin x является периодической, т.к.x D(f) sin (x +2 π )= sin x . Аналогично можно доказать, что ±2π; ±4π; ±6π;… также являются периодами. Период 2π являетсянаименьшим положительным и называетсяосновным .

Применение функций в экономике

Функции находят широкое применение в экономической теории и практике. Наиболее часто используются следующие функции:

1.Функция полезности (функция предпочтений) – зависимость полезности, т.е. результата, эффекта некоторого действия от уровня (интенсивности) этого действия.

2.Производственная функция зависимость результата производственной деятельности от обусловивших его факторов.

3.Функция выпуска (частный вид производственной функции) – зависимость объёма производства от наличия или потребления ресурсов.

4.Функция издержек (частный вид производственной функции) –зависимость издержек производства от объёма продукции.

5.Функция спроса, потребления и предложения – зависимость объёма спроса, потребления или предложения на отдельные товары или услуги от различных факторов (например, цены, дохода и т.п.).

Например, исследуя зависимости спроса на различные товары от дохода можно установить уровни доходов
, при которых начинается приобретение тех или иных товаров и уровни (точки) насыщения
для групп товаров первой и второй необходимости. (см. рис.1)

Рассматривая в одной системе координат кривые спроса и предложения, можно установить равновесную (рыночную) цену данного товара в процессе формирования цен в условиях конкурентного рынка (паутинообразная модель) (см. рис.2)

Изучая в теории потребительского спроса кривые безразличия (линии, вдоль которых полезность двух благ х и у одна и та же), например, задаваемые в виде xy = U , и линию бюджетного ограничения
при ценах благ
и доходе потребителяI, мы можем установить оптимальные количества благ
, имеющих максимальную полезность(см. рис.3).

Предметы роскоши

Товары 2-ой необходимости

Товары 1-ой необходимости

рис.3 рис.4

Рассматривая функции издержек (полных затрат) с(q ) и дохода фирмы r (q ) , мы можем установить зависимость прибыли π(q )= c (q )- r (q ) от объёма производства q (см. рис.4) и выявить уровни объёма производства, при которых производство продукции убыточно (0< q < q) и приносит прибыль
, дает максимальный убыток (q = q ) и максимальную прибыль (q = q ) , и найти размеры этих убытков или прибыли.

Для начала попробуй найти область определения функции:

Справился? Сравним​ ответы:

Все верно? Молодец!

Теперь попробуем найти область значений функции:

Нашел? Сравниваем:

Сошлось? Молодец!

Еще раз поработаем с графиками, только теперь чуть-чуть посложнее - найти и область определения функции, и область значений функции.

Как найти и область определения и область значений функции (продвинутый вариант)

Вот что получилось:

С графиками, я думаю, ты разобрался. Теперь попробуем в соответствии с формулами найти область определения функции (если ты не знаешь как это сделать, прочитай раздел про ):

Справился? Сверим ответы :

  1. , так как подкоренное выражение должно быть больше или равно нулю.
  2. , так как на ноль делить нельзя и подкоренное выражение не может быть отрицательным.
  3. , так как, соответственно при всех.
  4. , так как на ноль делить нельзя.

Однако, у нас остался еще один не разобранный момент…

Еще раз повторю определение и сделаю на нем акцент:

Заметил? Слово «единственный» - это очень-очень важный элемент нашего определения. Постараюсь объяснить тебе на пальцах.

Допустим, у нас есть функция, заданная прямой. . При, мы подставляем данное значение в наше «правило» и получаем, что. Одному значению соответствует одно значение. Мы даже можем составить таблицу различных значений и построить график данной функции, чтобы убедится в этом.

«Смотри! - скажешь ты, -« » встречается два раза!» Так быть может парабола не является функцией? Нет, является!

То, что « » встречается два раза далеко не повод обвинять параболу в неоднозначности!

Дело в том, что, при расчёте для, мы получили один игрек. И при расчёте с мы получили один игрек. Так что все верно, парабола является функцией. Посмотри на график:

Разобрался? Если нет, вот тебе жизненный пример сооовсем далекий от математики!

Допустим, у нас есть группа абитуриентов, познакомившихся при подаче документов, каждый из которых в разговоре рассказал, где он живет:

Согласись, вполне реально, что несколько ребят живут в одном городе, но невозможно, чтобы один человек жил в нескольких городах одновременно. Это как бы логичное представление нашей «параболы» - нескольким разным икс соответствует один и тот же игрек.

Теперь придумаем пример, когда зависимость не будет функцией. Допустим, эти же ребята рассказывали, на какие специальности они подали документы:

Здесь у нас совершенно другая ситуация: один человек может спокойно подать документы как на одно, так и на несколько направлений. То есть одному элементу множества ставится в соответствие несколько элементов множества. Соответственно, это не функция.

Проверим твои знания на практике.

Определи по рисункам, что является функцией, а что нет:

Разобрался? А вот и ответы :

  • Функцией является - В,Е.
  • Функцией не является - А, Б, Г, Д.

Ты спросишь почему? Да вот почему:

На всех рисунках кроме В) и Е) на один приходится несколько!

Уверена, теперь, ты с легкостью отличишь функцию от не функции, скажешь, что такое аргумент и что такое зависимая переменная, а так же определишь область допустимых значений аргумента и область определения функции. Приступаем к следующему разделу - как задать функцию?

Способы задания функции

Как ты думаешь, что означают слова «задать функцию» ? Правильно, это значит объяснить всем желающим, о какой функции в данном случае идет речь. Причем объяснить так, чтобы каждый понял тебя правильно и нарисованные людьми по твоему объяснению графики функций были одинаковы.

Как это можно сделать? Как задать функцию? Самый простой способ, который уже не раз применялся в этой статье - с помощью формулы. Мы пишем формулу, и, подставляя в нее значение, высчитываем значение. А как ты помнишь, формула - это закон, правило, по которому нам и другому человеку становится ясно, как икс превращается в игрек.

Обычно, именно так и делают - в заданиях мы видим уже готовые функции, заданные формулами, однако, существуют и другие способы задать функцию, про которые все забывают, в связи с чем вопрос «как еще можно задать функцию?» ставит в тупик. Разберемся во всем по порядку, а начнем с аналитического способа.

Аналитический способ задания функции

Аналитический способ это и есть задание функции с помощью формулы. Это самый универсальный и исчерпывающий и однозначный способ. Если у тебя есть формула, то ты знаешь о функции абсолютно все - ты можешь составить по ней табличку значений, можешь построить график, определить, где функция возрастает, а где убывает, в общем, исследовать ее по полной программе.

Рассмотрим функцию. Чему равно?

«Что это значит?» - спросишь ты. Сейчас объясню.

Напомню, что в записи выражение в скобках называется аргументом. И этот аргумент может быть любым выражением, не обязательно просто. Соответственно, каким бы ни был аргумент (выражение в скобках), мы его запишем вместо в выражении.

В нашем примере получится так:

Рассмотрим еще задание, связанное с аналитическим способом задания функции, которое будет у тебя на экзамене.

Найдите значение выражения, при.

Уверена, что сначала, ты испугался, увидев такое выражение, но в нем нет абсолютно ничего страшного!

Все как и в прошлом примере: каким бы ни был аргумент (выражение в скобках), мы его запишем вместо в выражении. Например, для функции.

Что же нужно сделать в нашем примере? Вместо надо написать, а вместо - :

сократить получившееся выражение:

Вот и все!

Самостоятельная работа

Теперь попробуй самостоятельно найти значение следующих выражений:

  1. , если
  2. , если

Справился? Сравним наши ответы: Мы привыкли, что функция имеет вид

Даже в наших примерах мы задаем функцию именно таким образом, однако аналитически можно задать функцию в неявном виде, например.

Попробуй построить эту функцию самостоятельно.

Справился?

Вот как строила ее я.

Какое уравнение мы в итоге вывели?

Правильно! Линейное, а это значит, что графиком будет прямая линия. Сделаем табличку, чтобы определить, какие точки принадлежат нашей прямой:

Вот как раз то, о чем мы говорили… Одному соответствует несколько.

Попробуем нарисовать то, что получилось:

Является ли то, что у нас получилось функцией?

Правильно, нет! Почему? Попробуй ответить на этот вопрос с помощью рисунка. Что у тебя вышло?

«Потому что одному значению соответствует несколько значений!»

Какой вывод мы можем из этого сделать?

Правильно, функция не всегда может быть выражена явно, и не всегда то, что «замаскировано» под функцию является функцией!

Табличный способ задания функции

Как следует из названия, этот способ представляет собой простую табличку. Да, да. Наподобие той, которой мы с тобой уже составляли. Например:

Здесь ты сразу подметил закономерность - игрек в три раза больше чем икс. А теперь задание на «очень хорошо подумать»: как ты считаешь, равносильная ли функция, заданная в виде таблицы, функции?

Не будем долго рассуждать, а будем рисовать!

Итак. Рисуем функцию, заданную обоями способами:

Видишь разницу? Дело совсем не в отмеченных точках! Присмотрись внимательнее:

Теперь увидел? Когда мы задаем функцию табличным способом, мы на графике отражаем только те точки, которые есть у нас в таблице и линия (как в нашем случае) проходит только через них. Когда мы задаем функцию аналитическим способом, мы можем взять любые точки, и наша функция ими не ограничивается. Вот такая вот особенность. Запоминай!

Графический способ построения функции

Графический способ построения функции не менее удобен. Мы рисуем нашу функцию, а другой заинтересованный человек может найти чему равен игрек при определенном икс и так далее. Графический и аналитический способы одни из самых распространенных.

Однако, здесь нужно помнить о чем мы с тобой говорили в самом начале - не каждая «загогулина» нарисованная в системе координат является функцией! Вспомнил? На всякий случай скопирую тебе сюда определение, что функцией является:

Как правило, люди обычно называют именно те три способа задания функции, которые мы разобрали - аналитический (с помощью формулы), табличный и графический, напрочь забывая о том, что функцию можно словесно описать. Как это? Да очень просто!

Словесное описание функции

Как же описать функцию словесно? Возьмем наш недавний пример - . Данную функцию можно описать «каждому действительному значению икс соответствует его утроенное значение». Вот и все. Ничего сложного. Ты, конечно, возразишь - «есть настолько сложные функции, которые словесно задать просто невозможно!» Да, есть и такие, но есть функции, которые описать словесно легче, чем задать формулой. Например: «каждому натуральному значению икс соответствует разница между цифрами, из которых он состоит, при этом за уменьшаемое берется наибольшее цифра, содержащиеся в записи числа». Теперь рассмотрим, как наше словесное описание функции реализуется на практике:

Наибольшая цифра в данном числе - , соответственно, - уменьшаемое, тогда:

Основные виды функций

Теперь перейдем к самому интересному - рассмотрим основные виды функций, с которыми ты работал/работаешь и будешь работать в курсе школьной и институтской математики, то есть познакомимся с ними, так сказать и дадим им краткую характеристику. Более подробно про каждую функцию читай в соответствующем разделе.

Линейная функция

Функция вида, где, - действительные числа.

Графиком данной функции служит прямая, поэтому построение линейной функции сводится к нахождению координат двух точек.

Положение прямой на координатной плоскости зависит от углового коэффициента.

Область определения функции (aka область допустимых значений аргумента) - .

Область значений - .

Квадратичная функция

Функция вида, где

Графиком функции является парабола, при ветви параболы направлены вниз, при — вверх.

Многие свойства квадратичной функции зависят от значения дискриминанта. Дискриминант вычисляется по формуле

Положение параболы на координатной плоскости относительно значения и коэффициента показаны на рисунке:

Область определения

Область значений зависит от экстремума данной функции (точки вершины параболы) и коэффициента (направления ветвей параболы)

Обратная пропорциональность

Функция, задаваемая формулой, где

Число называется коэффициентом обратной пропорциональности. В зависимости от того, какое значение, ветви гиперболы находятся в разных квадратах:

Область определения - .

Область значений - .

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

1. Функцией называется правило, по которому каждому элементу множества ставится в соответствие единственный элемент множества.

  • - это формула, обозначающая функцию, то есть зависимость одной переменной от другой;
  • - переменная величина, или, аргумент;
  • - зависимая величина - изменяется при изменении аргумента, то есть согласно какой-либо определенной формуле, отражающей зависимость одной величины от другой.

2. Допустимые значения аргумента , или область определения функции - это то, что связано с возможными, при которых функция имеет смысл.

3. Область значений функции - это то, какие значения принимает, при допустимых значениях.

4. Существует 4 способа задания функции:

  • аналитический (с помощью формул);
  • табличный;
  • графический
  • словесное описание.

5. Основные виды функций:

  • : , где, - действительные числа;
  • : , где;
  • : , где.

функция - это соответствие между элементами двух множеств, установленное по такому правилу, что каждому элементу одного множества ставится в соответствие некоторый элемент из другого множества.

график функции - это геометрическое место точек плоскости, абсциссы (x) и ординаты (y) которых связаны указанной функцией:

точка располагается (или находится) на графике функции тогда и только тогда, когда .

Таким образом, функция может быть адекватно описана своим графиком.

Табличный способ. Довольно распространенный, заключается в задании таблицы отдельных значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

При табличном способе задания функции можно приближенно вычислить не содержащиеся в таблице значения функции, соответствующие промежуточным значениям аргумента. Для этого используют способ интерполяции.

Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения сразу, без дополнительных измерений или вычислений. Однако, в некоторых случаях таблица определяет функцию не полностью, а лишь для некоторых значений аргумента и не дает наглядного изображения характера изменения функции в зависимости от изменения аргумента.

Графический способ. Графиком функции y = f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению.

Графический способ задания функции не всегда дает возможность точно определить численные значения аргумента. Однако он имеет большое преимущество перед другими способами - наглядность. В технике и физике часто пользуются графическим способом задания функции, причем график бывает единственно доступным для этого способом.

Чтобы графическое задание функции было вполне корректным с математической точки зрения, необходимо указывать точную геометрическую конструкцию графика, которая, чаще всего, задается уравнением. Это приводит к следующему способу задания функции.



Аналитический способ. Чаще всего закон, устанавливающий связь между аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим.

Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью.

Если зависимость между x и y задана формулой, разрешенной относительно y, т.е. имеет вид y = f(x), то говорят, что функция от x задана в явном виде.

Если же значения x и y связаны некоторым уравнением вида F(x,y) = 0, т.е. формула не разрешена относительно y, что говорят, что функция y = f(x) задана неявно.

Функция может быть определена разными формулами на разных участках области своего задания.

Аналитический способ является самым распространенным способом задания функций. Компактность, лаконичность, возможность вычисления значения функции при произвольном значении аргумента из области определения, возможность применения к данной функции аппарата математического анализа - основные преимущества аналитического способа задания функции. К недостаткам можно отнести отсутствие наглядности, которое компенсируется возможностью построения графика и необходимость выполнения иногда очень громоздких вычислений.

Словесный способ. Этот способ состоит в том, что функциональная зависимость выражается словами.

Пример 1: функция E(x) - целая часть числа x. Вообще через E(x) = [x] обозначают наибольшее из целых чисел, которое не превышает x. Иными словами, если x = r + q, где r - целое число (может быть и отрицательным) и qпринадлежит интервалу = r. Функция E(x) = [x] постоянна на промежутке = r.

Пример 2: функция y = {x} - дробная часть числа. Точнее y ={x} = x - [x], где [x] - целая часть числа x. Эта функция определена для всех x. Если x - произвольное число, то представив его в виде x = r + q (r = [x]), где r - целое число и q лежит в интервале .
Мы видим,что добавление n к аргументу x, не меняет значение функции.
Наименьшее отличное от нуля число из n есть , таким образом, это период sin 2x .

Значение аргумента, при котором функция равна 0, называется нулём (корнем ) функции.

Функция может иметь несколько нулей.

Например, функция y = x (x + 1)(x-3) имеет три нуля: x = 0, x = - 1, x =3 .

Геометрически нуль функции – это абсцисса точки пересечения графика функции с осью Х .

На рис.7 представлен график функции с нулями: x = a, x = b и x = c .

Если график функции неограниченно приближается к некоторой прямой при своём удалении от начала координат, то эта прямая называется асимптотой .

Обратная функция

Пусть задана функция у=ƒ(х) с областью определения D и множеством значений Е. Если каждому значению уєЕ соответствует единственное значение хєD, то определена функция х=φ(у) с областью определения Е и множеством значений D (см. рис. 102).

Такая функция φ(у) называется обратной к функции ƒ(х) и записывается в следующем виде: х=j(y)=f -1 (y).Про функции у=ƒ(х) и х=φ(у) говорят, что они являются взаимно обратными. Чтобы найти функцию х=φ(у), обратную к функции у=ƒ (х), достаточно решить уравнение ƒ(х)=у относительно х (если это возможно).

1. Для функции у=2х обратной функцией является функция х=у/2;

2.Для функции у=х2 хє обратной функцией является х=√у; заметим, что для функции у=х 2 , заданной на отрезке [-1; 1], обратной не существует, т. к. одному значению у соответствует два значения х (так, если у=1/4, то х1=1/2, х2=-1/2).

Из определения обратной функции вытекает, что функция у=ƒ(х) имеет обратную тогда и только тогда, когда функция ƒ(х) задает взаимно однозначное соответствие между множествами D и Е. Отсюда следует, что любая строго монотонная функция имеет обратную. При этом если функция возрастает (убывает), то обратная функция также возрастает (убывает).

Заметим, что функция у=ƒ(х) и обратная ей х=φ(у) изображаются одной и той же кривой, т. е. графики их совпадают. Если же условиться, что, как обычно, независимую переменную (т. е. аргумент) обозначить через х, а зависимую переменную через у, то функция обратная функции у=ƒ(х) запишется в виде у=φ(х).

Это означает, что точка M 1 (x o ;y o) кривой у=ƒ(х) становится точкой М 2 (у о;х о) кривой у=φ(х). Но точки M 1 и М 2 симметричны относительно прямой у=х (см. рис. 103). Поэтому графики взаимно обратных функции у=ƒ(х) и у=φ(х) симметричны относительно биссектрисы первого и третьего координатных углов.

Сложная функция

Пусть функция у=ƒ(u) определена на множестве D, а функция u= φ(х) на множестве D 1 , причем для  x D 1 соответствующее значение u=φ(х) є D. Тогда на множестве D 1 определена функция u=ƒ(φ(х)), которая называется сложной функцией от х (или суперпозицией заданных функций, или функцией от функции).

Переменную u=φ(х) называют промежуточным аргументом сложной функции.

Например, функция у=sin2x есть суперпозиция двух функций у=sinu и u=2х. Сложная функция может иметь несколько промежуточных аргументов.

4. Основные элементарный функции и их графики.

Основными элементарными функциями называют следующие функции.

1) Показательная функция у=a х,a>0, а ≠ 1. На рис. 104 показаны графики показательных функций, соответствующие различным основаниям степени.

2) Степенная функция у=х α , αєR. Примеры графиков степенных функций, соответствующих различным показателям степени, предоставлены на рисунках

3)Логарифмическая функция y=log a x, a>0,a≠1;Графики логарифмических функций, соответствующие различным основаниям, показаны на рис. 106.

4) Тригонометрические функции у=sinx, у=cosx, у=tgх, у=ctgx; Графики тригонометрических функций имеют вид, показанный на рис. 107.

5) Обратные тригонометрические функции у=arcsinx, у=arccosх, у=arctgx, у=arcctgx. На рис. 108 показаны графики обратных тригонометрических функций.

Функция, задаваемая одной формулой, составленной из основных элементарных функций и постоянных с помощью конечного числа арифметических операций (сложения, вычитания, умножения, деления) и операций взятия функции от функции, называется элементарной функцией.

Примерами элементарных функций могут служить функции

Примерами неэлементарных функций могут служить функции

5. Понятия предела последовательности и функции. Свойства пределов.

Преде́л фу́нкции (предельное значение функции ) в заданной точке,предельной для области определения функции, - такая величина, к которой стремится значение рассматриваемой функции при стремлении её аргумента к данной точке.

В математике пределом последовательности элементов метрического пространства или топологического пространства называют элемент того же пространства, который обладает свойством «притягивать» элементы заданной последовательности. Пределом последовательности элементовтопологического пространства является такая точка, каждая окрестность которой содержит все элементы последовательности, начиная с некоторого номера. В метрическом пространстве окрестности определяются через функцию расстояния, поэтому понятие предела формулируется на языке расстояний. Исторически первым было понятиепредела числовой последовательности, возникающее в математическом анализе, где оно служит основанием для системы приближений и широко используется при построении дифференциального и интегральногоисчислений.

Обозначение:

(читается: предел последовательности икс-энное при эн, стремящемся к бесконечности, равен a )

Свойство последовательности иметь предел называют сходимостью : если у последовательности есть предел, то говорят, что данная последовательность сходится ; в противном случае (если у последовательности нет предела) говорят, что последовательность расходится . В хаусдорфовом пространстве и, в частности, метрическом пространстве , каждая подпоследовательность сходящейся последовательности сходится, и её предел совпадает с пределом исходной последовательности. Другими словами, у последовательности элементов хаусдорфово пространства не может быть двух различных пределов. Может, однако, оказаться, что у последовательности нет предела, но существует подпоследовательность (данной последовательности), которая предел имеет. Если из любой последовательности точек пространства можно выделить сходящуюся подпоследовательность, то, говорят, что данное пространство обладает свойством секвенциальной компактности (или, просто, компактности, если компактность определяется исключительно в терминах последовательностей).

Понятие предела последовательности непосредственно связано с понятием предельной точки (множества): если у множества есть предельная точка, то существует последовательность элементов данного множества, сходящаяся к данной точке.

Определение

Пусть дано топологическое пространство и последовательность Тогда, если существует элемент такой, что

где - открытое множество, содержащее , то он называется пределом последовательности . Если пространство является метрическим, то предел можно определить с помощью метрики: если существует элемент такой, что

где - метрика, то называется пределом .

· Если пространство снабжено антидискретной топологией, то пределом любой последовательности будет любой элемент пространства.

6. Предел функции в точке. Односторонние пределы.

Функция одной переменной. Определение предела функции в точке по Коши. Число b называется пределом функции у = f (x ) при х , стремящемся к а (или в точке а ), если для любого положительного числа  существует такое положительное число , что при всех х ≠ а, таких, что |x a | < , выполняется неравенство
| f (x ) – a | <  .

Определение предела функции в точке по Гейне. Число b называется пределом функции у = f (x ) при х , стремящемся к а (или в точке а ), если для любой последовательности {x n }, сходящейся к а (стремящейся к а , имеющей пределом число а ), причем ни при каком значении n х n ≠ а , последовательность {y n = f (x n)} сходится к b .

Данные определения предполагают, что функция у = f (x ) определена в некоторой окрестноститочки а , кроме, быть может, самой точки а .

Определения предела функции в точке по Коши и по Гейне эквивалентны: если число b служит пределом по одному из них, то это верно и по второму.

Указанный предел обозначается так:

Геометрически существование предела функции в точке по Коши означает, что для любого числа > 0 можно указать на координатной плоскости такой прямоугольник с основанием 2 > 0, высотой 2 и центром в точке (а; b ), что все точки графика данной функции на интервале (а – ; а + ), за исключением, быть может, точки М (а ; f (а )), лежат в этом прямоугольнике

Односторо́нний преде́л в математическом анализе - предел числовой функции, подразумевающий «приближение» к предельной точке с одной стороны. Такие пределы называют соответственно левосторо́нним преде́лом (или преде́лом сле́ва ) и правосторо́нним преде́лом (преде́лом спра́ва ). Пусть на некотором числовом множестве задана числовая функция и число - предельная точка области определения . Существуют различные определения для односторонних пределов функции в точке , но все они эквивалентны.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.