Принцип преобразования частоты. Частотный преобразователь - виды, принцип действия, схемы подключения

Преобразованием частоты называют перенос (транспонирование) спектра сигнала (обычно узкополосного) по оси частот «вверх» или «вниз» на некоторое расстояние w г, задаваемое гетеродином – маломощным генератором гармонического колебания . При этом сохраняются вид модуляции и структура спектра сигнала, изменяется только его положение на оси частот.

Преобразователь частоты состоит из смесителя частот и гетеродина (рис. 3.32).

Смеситель частот реализуется на параметрической или нелинейной основе, т.к. на его выходе необходимо получить колебание комбинационных частот входных сигналов второго порядка (суммарных или разностных). Среднюю частоту выходного сигнала или называют промежуточной. Собственно говоря, ничего нового в операции преобразования частоты для нас нет, с ней мы уже встречались при рассмотрении свойств преобразования Фурье (п. 9), свойств аналитического сигнала (п. 5) и параметрической реализации однополосного модулятора (рис. 3.20). Схема, приведённая на рис.3.20, может быть использована в качестве параметрического преобразователя частоты без каких либо изменений. Нелинейный преобразователь частоты может быть выполнен также по выше рассмотренной схеме амплитудного модулятора (рис. 3.16) при настройке нагрузочного колебательного LC контура на промежуточную частоту .

Преобразователи частоты входят в состав подавляющего большинства современных радиоприёмных устройств (супергетеродинов). Их применение позволяет основную додетекторную обработку сигналов в этих приёмниках – фильтрацию и усиление производить не на частоте сигнала (которая может быть слишком высокой и изменяться в широком диапазоне частот), а на фиксированной промежуточной. Это позволяет существенно улучшить чувствительность и избирательность приёмников, а также упростить их перестройку в широком диапазоне принимаемых частот.

Контрольные вопросы

1. Какой ФУ называют преобразователем частоты?

2. Приведите алгоритм и схему параметрического преобразователя частоты.

3. Объясните назначение каждого элемента схемы параметрического преобразователя частоты.

Преобразование частоты сигнала переносит частоту сигнала в другую область на частотной оси. Рассмотрим смысл этой операции обработки сигнала.

Классическая система преобразования частоты состоит из входного фильтра, гетеродина, смесителя, выходного фильтра промежуточной частоты (ПЧ).

Назначение входного фильтра - ограничить полосу частот входного сигнала. Для упрощения примем, что этот сигнал синусоидальный с частотой f 1 , заданный функцией X(t)=sin(2πf 1 t + ϕ 1), где f 1 - частота входного сигнала, ϕ 1 - начальная фаза входного сигнала, π = 3,141...

Гетеродин - это синусоидальный генератор с постоянной частотой f 2 и начальной фазой ϕ 2 . Опишем сигнал гетеродина функцией Y(t)=sin(2πf 2 t + ϕ 2).

Смеситель представляет собой умножитель сигналов. На выходе смесителя порождается сложный сигнал с функцией X(t) * Y(t). Учитывая тригонометрическое соотношение sin α * cos β = ½ (sin(α + β) + sin(α - β)), становится понятно, что сигнал на выходе смесителя будет состоять из суммы синусоидальных сигналов с частотами f 1 + f 2 и f 1 - f 2 и соответствующими начальными фазами.

Фильтр промежуточной частоты (это традиционное название из радиотехники) предназначен для выделения одной из частотных компонент: f 1 + f 2 или f 1 - f 2 . Если применятся фильтр, пропускающий частоту f 1 + f 2 , то соответствующая операция преобразования частоты происходит с повышением частоты выходного сигнала, относительно входного. Если применятся фильтр, пропускающий частоту f 1 - f 2 , то преобразование происходит с понижением частоты .

С учётом того, что входной физический сигнал - это не одиночная частота f 1 , а сумма частот в разложении реального сигнала с ограниченной полосой пропускания, понятно, что операция преобразования частоты может сдвигать полосу частот сигнала либо влево, либо вправо на частотной оси. И, перестраивая частоту гетеродина, можно управлять либо сдвигом выходной частоты, либо сдвигом входной, в зависимости от цели преобразования.

Применение преобразования частоты с понижением частоты с последующей оцифровкой сигнала позволяет применить АЦП с меньшей частотой преобразования.

Операцию преобразования частототы можно рассматривать как частный случай применения эффекта интермодуляции для пользы дела. Здесь в качестве нелинейного элемента выступает умножитель, и, исходя из его теоретических свойств, показанных выше, идеальный умножитель и идеально синусоидальный гетеродин создают интермодуляцию исключительно первого порядка.


1. Преобразование частоты сигнала . В этом случае сигнал на входе устройства с переменной амплитудой и (или) фазой , сосредоточен­ный по спектру около частоты f 1 превращается на выходе устройства в сигнал , имеющий ту же форму (К и - постоянные), но сосредоточенный по спектру около частоты .

При преобразовании частоты вверх f 2 больше, чем f 1. При преобразовании частоты вниз f 2 меньше, чем f 1 .

Преобразование частоты часто используется в современных устройствах при приёме сигналов как с амплитудной, так и угловой модуляцией;

2. Преобразователь частоты. Преобразователем частоты называют устройство, позволяющее переносить спектр входного сигнала вверх или вниз по шкале частот.

В качестве преобразователя частоты может быть использован нелинейный усилитель с колебательным контуром на выходе, настроенным на специальную (комбинационную) частоту, рис. 3.1.

Рисунок 3.1. Схема преобразователя при преобразовании частоты вверх

Преобразование частоты вверх осуществляется путем перемножения двух колебаний и и выделения колебания с комбинационной частотой (w+Ω) на выходе, следуя формуле:

cos(x)×cos(y) = (1/2)

При этом имеем:

Воздействие:

Полезная реакция:

В общем случае низкочастотный сигнал можно представить в виде суммы нескольких гармонических колебаний. Для выделения полезной реакции необходим фильтр.

Преобразование частоты вниз осуществляется по той же схеме нелинейного усилителя (рис. 3.2) путем перемножения двух входных колебаний и и выделения колебания с комбинационной частотой на выходе, следуя формуле:

cos(x)×cos(y) = (1/2)

Рисунок 3.2 - Схема преобразователя при преобразовании частоты вниз

При этом имеем:

Воздействие:

Полезная реакция:

В общем случае низкочастотный сигнал можно представить в виде суммы нескольких гармонических колебаний. Для выделения полезной реакции необходим фильтр низкой частоты.

3.Амплитудная модуляция ( АМ) исторически была первым видом модуляции, освоенным на практике. В настоящее время АМ применяется в основном только для радиовещания на сравнительно низких частотах (не выше коротких волн) и для передачи изображения в телевизионном вещании. Это обусловлено низким КПД использования энергии модулированных сигналов.

АМ соответствует переносу информации s(t) в амплитуду U(t) при постоянных значениях параметров несущего колебания: частоты w и начальной фазы j 0 . АМ – сигнал представляет собой произведение информационной огибающей U(t) и гармонического колебания ее заполнения с более высокими частотами. Форма записи амплитудно-модулированного сигнала:

u(t) = U(t)×cos(w o t+j o), (3.1)

U(t) = U m ×, (3.2)

где U m – постоянная амплитуда несущего колебания при отсутствии входного (модулирующего) сигнала s(t), m – коэффициент амплитудной модуляции

Значение m характеризует глубину амплитудной модуляции. В простейшем случае, если модулирующий сигнал представлен одночастотным гармоническим колебанием с амплитудой S o , то коэффициент модуляции равен отношению амплитуд модулирующего и несущего колебания m=S o /U m . Значение m должно находиться в пределах от 0 до 1 для всех гармоник модулирующего сигнала. При значении m<1 форма огибающей несущего колебания полностью повторяет форму модулирующего сигнала s(t), что можно видеть на рис.3.4 (сигнал s(t) = sin(w s t)). Малую глубину модуляции для основных гармоник модулирующего сигнала (m<<1) применять нецелесообразно, т.к. при этом мощность передаваемого информационного сигнала будет много меньше мощности несущего колебания, и мощность передатчика используется неэкономично.

Рис..3.4 – Модулированный сигнал Рис. 3.5 – Глубокая модуляция

На рис.3.5 приведен пример так называемой глубокой модуляции, при которой значение m стремится к 1 в экстремальных точках функции s(t).

Стопроцентная модуляция (m=1) может приводить к искажениям сигналов при перегрузках передатчика, если последний имеет ограниченный динамический диапазон по амплитуде несущих частот или ограниченную мощность передатчика (увеличение амплитуды несущих колебаний в пиковых интервалах сигнала U(t) в два раза требует увеличения мощности передатчика в четыре раза).

При m>1 возникает так называемая перемодуляция , пример которой приведен на рис.3.6. Форма огибающей при перемодуляции искажается относительно формы модулирующего сигнала и после демодуляции, если применяются ее простейшие методы, информация может искажаться.

4.Моногармоническая амплитудная модуляция. Простейшая форма модулированного сигнала создается при моногармонической амплитудной модуляции – модуляции несущего сигнала гармоническим колебанием с одной частотой Ω:

u(t) = U m × cos(w o t), (3.3)

Значения начальных фазовых углов несущего и модулирующего колебания здесь и в дальнейшем, для упрощения получаемых выражений будем принимать равными нулю. С учетом формулы cos(x)×cos(y) = (1/2) из выражения (3.3) получаем:

u(t) = U m cos(w o t) + (U m M/2)cos[(w o +Ω)t] + (U m M/2)cos[(w o - Ω)t] (3.4)

Отсюда следует, что модулирующее колебание с частотой Ω перемещается в область частоты w o и расщепляется на два колебания с частотами соответственно w o + Ω верхняя боковая частота, и w o - j - нижняя боковая частота. Эти частоты располагаются на оси симметрично относительно частоты w o , рис. 3.7. Амплитуды колебаний на боковых частотах равны друг другу, и при 100%-ной модуляции равны половине амплитуды колебаний несущей частоты. Если преобразовать уравнение (3.3) с учетом начальных фаз несущей и модулирующей частоты, то получим правило изменения фаз, аналогичное правилу изменения частоты:

Начальная фаза модулирующего колебания для верхней боковой частоты складывается с начальной фазой несущей,

Начальная фаза модулирующего колебания для нижней – вычитается из фазы несущей.

Физическая ширина спектра модулированного сигнала в два раза больше ширины спектра модулирующего сигнала.

Под преобразованием частоты понимают процесс переноса без каких-либо искажений спектра сигнала в другую область частот.

Преобразование частоты применяют для размещения спектра сигнала в заданном участке диапазона частот канала связи, а также для повышения чувствительности и избирательности приемников супергетеродинного типа.

Принцип преобразования поясняется рис. 3.9, 3.10.

Сигнал на входе преобразователя зависит от времени и первичного сигнала:

В умножителе он умножается на сигнал гетеродина

а затем фильтруется полосовым фильтром.

Входной сигнал может быть модулированным (непрерывно или дискретно) по амплитуде, фазе, несущей частоте. Пусть спектральная плотность любого модулированного сигнала состоит из спектральных компонент, сконцентрированных около частот +со 0 (рис. 3.10, а):

Рис. 3.9. Структурная схема преобразователя частоты:

1 - умножитель; 2 - полосовой фильтр

Рис. 3.10.

Спектральная плотность характеризуется спектральной плотностью амплитуд и фазовой характеристикой. Если эти характеристики необходимы для соответствующих расчетов, нужно рассчитать их по формулам и представить в виде графиков.

В других случаях точные данные не требуются и спектральные плотности можно изображать произвольно: например, в виде колоколообразных спектров или треугольников для непрерывных спектральных плотностей или стрелками - для дискретных, как это делается в данной книге.

Вычислим спектральную плотность сигнала гетеродина, используя выражение (П.1.3) дельта-функции:

Полагая получим

Спектральная плотность гармонического косинусоидального колебания с нулевой начальной фазой (рис. 3.10, б) определяется произведением амплитуды этого колебания, увеличенной в л раз, и суммы двух дельта-функций, расположенных в точках частотной оси со = +со г. Вычислим также спектральную плотность произведения входного сигнала и гетеродина по формуле (2.51):

где - промежуточная частота; ? ВХ (/Ъ), 5 г (/со) - спектральные плотности входного сигнала и гетеродина соответственно.

В спектральной плотности произведения, показанной на рис. 3.10, в, содержится полезный продукт преобразования (спектральные компоненты вблизи значений промежуточной частоты

со = +(О пр), а также мешающие компоненты вблизи частот -со 0 - со г, СОо + Wp

Полезные компоненты (см. рис. 3.10, в, г) проходят на выход полосового фильтра, а мешающие существенно им ослабляются. Спектральные компоненты па выходе полосового фильтра (рис. 3.10, д ) определяются выражением

если коэффициент передачи полосового фильтра /С(/со) = 1 в заданной полосе частот. Они с точностью до постоянного множителя, равного А/ 2, совпадают со спектральными компонентами сигнала на его входе, а спектр преобразованного сигнала группируется около новых значений частот, равных со = +со пр.

Преобразование частоты используется при модуляции и детектировании сигналов.

Спектра сигнала по частоте без изменения формы спектра. П. ч. возникает при воздействии колебаний сигнала н гетеродина на нелинейное устройство, наз. смесителем; в результате в спектре выходного сигнала наряду с др. частотами образуются разностная и суммарная частоты: выделение одной из них и является результатом работы смесителя. Величина сдвига определяется частотой вспомогат. генератора (гетеродина).

П. ч. используют в радиоприёмных устройствах, измерит. технике, эталонных генераторах и т. д., поскольку при этом усиление сигнала в широком диапазоне перестраиваемых частот заменяется усилением неперестраиваемой комбинац. частоты, наз. промежуточной. Постоянство промежуточной частоты = const при перестройке частоты сигнала обеспечивает одноврем. перестройка частоты гетеродина Т. о., усиление сигнала в устройствах с П. ч. осуществляется на сравнительно нпзкой, обычно стандартной частоте.

При передаче информации радиочастотное колебание можно модулировать по разл. параметрам: амплитуде частоте p фазе (см. Модулированные колебания). Для того чтобы при П. ч. была перенесена на промежуточную частоту без искажений, необходимо выполнение . условий: 1) нелинейное устройство (напр., ) должно иметь вольт-амперную характеристику, близкую к квадратичной или аппроксимируемую полиномом чётной степени; 2) амплитуда сигнала должна быть много меньше амплитуды колебаний гетеродина 3) частота должна быть выше

Поскольку в выходной цепи смесителя имеются разл. комбинац. частоты, то для выделения разностной или суммарной частоты выходная цепь должна быть избирательной, т. е. резонансной, настроенной на нужную частоту.

Под П. делителя частоты или умножителя частоты. С . Ф. Литвак.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ПРЕОБРАЗОВАНИЕ ЧАСТОТЫ" в других словарях:

    преобразование частоты - Процесс линейного переноса полосы частот, занимаемой сигналом, в другую область частотного спектра с инверсией или без нее. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М. Горностаева …

    преобразование частоты - dažnio keitimas statusas T sritis automatika atitikmenys: angl. frequency conversion; frequency transformation vok. Frequenztransformation, f; Frequenzumsetzung, f; Frequenzumwandlung, f; Frequenzwandlung, f rus. преобразование частоты, n pranc.… … Automatikos terminų žodynas

    преобразование частоты - dažnio keitimas statusas T sritis fizika atitikmenys: angl. frequency conversion vok. Frequenzumsetzung, f; Frequenzumwandlung, f; Frequenzwandlung, f rus. преобразование частоты, n pranc. conversion de la fréquence, f … Fizikos terminų žodynas

    преобразование частоты радиосигнала - преобразование частоты Процесс переноса полосы радиочастот, занимаемой сигналом, в другую часть частотного спектра. [ГОСТ 24375 80] Тематики радиосвязь Обобщающие термины радиоприем Синонимы преобразование частоты … Справочник технического переводчика

    преобразование частоты в код числа - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN frequency to number conversion … Справочник технического переводчика

    преобразование частоты в направлении её уменьшения - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN frequency down conversionFDC … Справочник технического переводчика

    преобразование частоты в напряжение - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN frequency to voltage conversion … Справочник технического переводчика

    преобразование частоты с понижением - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN frequency down conversion … Справочник технического переводчика

    Преобразование частоты радиосигнала - 163. Преобразование частоты радиосигнала Преобразование частоты Источник: ГОСТ 24375 80: Радиосвязь. Термины и определения оригинал документа … Словарь-справочник терминов нормативно-технической документации

    преобразование частоты на основе комбинационного рассеяния - Ramano dažnio keitimas statusas T sritis radioelektronika atitikmenys: angl. Raman frequency conversion vok. Raman Frequenzumwandlung, f rus. преобразование частоты на основе комбинационного рассеяния, n pranc. conversion Raman de fréquence, f … Radioelektronikos terminų žodynas

Книги

  • Радиотехнические цепи и сигналы (комплект из 2 книг) , И. С. Гоноровский. Книга является учебником по новому курсу «Радиотехнические цепи и сигналы» и соответствует программе этого курса для специальности «Радиотехника». В первой частиизлагается спектральный и…
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.