Космические объекты. Космические тела во Вселенной: особенности Самые странные объекты в космосе


Федеральное агентство по образованию ГОУ ВПО Уральский государственный горный университет.
Факультет ИСП.
    Виды космических объектов
    Контрольная работа по дисциплине
    Концепции Современного Естествознания
    Студент: Малахов Я.И. Группа: ЦЭМТ-11-1
    Преподаватель: Адриановский Б.П.
    Екатеринбург – 2011г.

Ведение

Космический объект - небесное тело (астрономический объект) или космический аппарат находящиеся за пределами земной атмосферы в космическом пространстве.

К естественным космическим объектам относятся звёзды, планеты и их естественные спутники, астероиды, кометы и т. п. Искусственные космические объекты - космические аппараты, последние ступени ракет-носителей и их части.

В данной работе мы постараемся рассмотреть все видовое разнообразие астрономических объектов, представленных в нашей Вселенной.

Общая характеристика астрономических объектов.

Небесное тело (или точнее астрономический объект) - это материальный объект, естественным образом сформировавшийся в космическом пространстве. К небесным телам можно отнести кометы, планеты, метеориты, астероиды, звёзды и прочее. Небесные тела изучает астрономия.
Размеры небесных тел разные - от огромных до крошечных. Самыми большими являются, как правило, звёзды, самыми маленькими - метеориты. Небесные тела объединяют в системы в зависимости от того, что эти тела собой представляют.

Звезды

Звезда? - небесное тело, в котором идут, шли или будут идти термоядерные реакции. Но чаще всего звездой называют небесное тело, в котором идут в данный момент термоядерные реакции. Солнце - типичная звезда спектрального класса G. Звёзды представляют собой массивные светящиеся газовые (плазменные) шары. Образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности - тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе. Примечательно и то, что звёзды имеют отрицательную теплоёмкость.

Невооружённым взглядом (при хорошей остроте зрения) на небе видно около 6000 звёзд, по 3000 в каждом полушарии. Все видимые с Земли звёзды (включая видимые в самые мощные телескопы) находятся в местной группе галактик.

Виды звезд

Основная (гарвардская) спектральная классификация звёзд

Коричневые карлики

Коричневые карлики это тип звезд, в которых ядерные реакции никогда не могли компенсировать потери энергии на излучение. Долгое время коричневые карлики были гипотетическими объектами. Их существование предсказали в середине XX в., основываясь на представлениях о процессах, происходящих во время формирования звезд. Однако в 2004 году впервые был обнаружен коричневый карлик. На сегодняшний день открыто достаточно много звезд подобного типа. Их спектральный класс М - T. В теории выделяется ещё один класс - обозначаемый Y.

Белые карлики

Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и её быстрое перемещение по диаграмме Герцшпрунга - Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы: ядро звезды может закончить свою эволюцию как белый карлик (маломассивные звёзды), в случае, если её масса на поздних стадиях эволюции превышает предел Чандрасекара - как нейтронная звезда (пульсар), если же масса превышает предел Оппенгеймера - Волкова - как чёрная дыра. В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями - вспышками сверхновых.
Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

Красные гиганты

Красные гиганты и сверхгиганты - это звёзды с довольно низкой эффективной температурой (3000 - 5000 К), однако с огромной светимостью. Типичная абсолютная звёздная величина таких объектов?3m-0m(I и III класс светимости). Для их спектра характерно присутствие молекулярных полос поглощения, а максимум излучения приходится на инфракрасный диапазон.

Переменные звёзды

Переменная звезда - это звезда, за всю историю наблюдения которой хоть один раз менялся блеск. Причин переменности много и связаны они могут быть не только с внутренними процессами: если звезда двойная и луч зрения лежит или находится под небольшим углом к полю зрения, то одна звезда, проходя по диску звезды, будет его затмевать, также блеск может измениться, если свет от звезды пройдет сквозь сильное гравитационное поле. Однако в большинстве случаев переменность связана с нестабильными внутренними процессами. В последней версии общего каталога переменных звезд принято следующее деление:
Эруптивные переменные звёзды - это звёзды, изменяющие свой блеск в силу бурных процессов и вспышек в их хромосферах и коронах. Изменение светимости происходит обычно вследствие изменений в оболочке или потери массы в форме звёздного ветра переменной интенсивности и/или взаимодействия с межзвёздной средой.
Пульсирующие переменные звёзды - это звёзды, показывающие периодические расширения и сжатия своих поверхностных слоёв. Пульсации могут быть радиальными и не радиальными. Радиальные пульсации звезды оставляют её форму сферической, в то время как не радиальные пульсации вызывают отклонение формы звезды от сферической, а соседние зоны звезды могут быть в противоположных фазах.
Вращающиеся переменные звёзды - это звёзды, у которых распределение яркости по поверхности неоднородно и/или они имеют неэлипсоидальную форму, вследствие чего при вращении звёзд наблюдатель фиксирует их переменность. Неоднородность яркости поверхности может быть вызвана наличием пятен или температурных или химических неоднородностей, вызванных магнитными полями, чьи оси не совпадают с осью вращения звезды.
Катаклизмические (взрывные и новоподобные) переменные звёзды . Переменности этих звёзд вызвана взрывами, причиной которых являются взрывные процессы в их поверхностных слоях (новые) или глубоко в их недрах (сверхновые).
Затменно-двойные системы.
Оптические переменные двойные системы с жёстким рентгеновским излучением
Новые типы переменных - типы переменности, открытые в процессе издания каталога и поэтому не попавшие в уже изданные классы.

Новые

Новая звезда - тип катаклизмических переменных. Блеск у них меняется не так резко, как у сверхновых (хотя амплитуда может составлять 9m): за несколько дней до максимума звезда лишь на 2m слабее. Количество таких дней определяет, к какому классу новых относится звезда:
Очень быстрые, если это время (обозначаемое как t2) меньше 10 дней.
Быстрые - 11
Очень медленные: 151
Предельно медленные, находящие вблизи максимума годами.

Существует зависимость максимума блеска новой от t2. Иногда эту зависимость используют для определения расстояния до звезды. Максимум вспышки в разных диапазонах ведет себя по-разному: когда в видимом диапазоне уже наблюдается спад излучения, в ультрафиолете все ещё продолжается рост. Если наблюдается вспышка и в инфракрасном диапазоне, то максимум будет достигнут только после того, как блеск в ультрафиолете пойдет на спад. Таким образом, болометрическая светимость во время вспышки довольно долго остается неизменной.

В нашей Галактике можно выделить две группы новых: новые диска (в среднем они ярче и быстрее), и новые балджа, которые немного медленнее и, соответственно, немного слабее.

Сверхновые

Сверхновые звёзды - звёзды, заканчивающие свою эволюцию в катастрофическом взрывном процессе. Термином «сверхновые» были названы звёзды, которые вспыхивали гораздо (на порядки) сильнее так называемых «новых звёзд». На самом деле, ни те, ни другие физически новыми не являются, всегда вспыхивают уже существующие звёзды. Но в нескольких исторических случаях вспыхивали те звёзды, которые ранее были на небе практически или полностью не видны, что и создавало эффект появления новой звезды. Тип сверхновой определяется по наличию в спектре вспышки линий водорода. Если он есть, значит сверхновая II типа, если нет - то I типа

Гиперновые

Гиперновая - коллапс исключительно тяжёлой звезды после того, как в ней больше не осталось источников для поддержания термоядерных реакций; другими словами, это очень большая сверхновая. С начала 1990-х годов были замечены столь мощные взрывы звёзд, что сила взрыва превышала мощность взрыва обычной сверхновой примерно в 100 раз, а энергия взрыва превышала 1046 джоулей. К тому же многие из этих взрывов сопровождались очень сильными гамма-всплесками. Интенсивное исследование неба нашло несколько аргументов в пользу существования гиперновых, но пока что гиперновые являются гипотетическими объектами. Сегодня термин используется для описания взрывов звёзд с массой от 100 до 150 и более масс Солнца. Гиперновые теоретически могли бы создать серьёзную угрозу Земле вследствие сильной радиоактивной вспышки, но в настоящее время вблизи Земли нет звёзд, которые могли бы представлять такую опасность. По некоторым данным, 440 миллионов лет назад имел место взрыв гиперновой звезды вблизи Земли. Вероятно, короткоживущий изотоп никеля 56Ni попал на Землю в результате этого взрыва.

Нейтронные звёзды

У звёзд более массивных, чем Солнце, давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны, упакованные так плотно, что размер звезды измеряется километрами, а плотность в 280 трлн. раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Составные объекты.

Звездные системы

Звёздные системы могут быть одиночными и кратными: двойными, тройными и большей кратности. В случае если в систему входит более десяти звезд, то принято её называть звёздным скоплением. Двойные (кратные) звёзды очень распространены. По некоторым оценкам более 70 % звёзд в галактике кратные. Так среди 32 ближайших к Земле звёзд 12 кратных, из которых 10 двойных, в том числе и самая яркая из визуально наблюдаемых звёзд Сириус. В окрестностях 20 парсек от Солнечной системы из более 3000 звёзд, около половины - двойные звёзды всех типов.

Двойные звёзды

Двойная звезда, или двойная система - две гравитационно-связанные звезды, обращающиеся по замкнутым орбитам вокруг общего центра масс. C помощью двойных звёзд существует возможность узнать массы звёзд и построить различные зависимости. А не зная зависимости масса - радиус, масса - светимость и масса - спектральный класс, практически ничего невозможно сказать ни о внутреннем строении звёзд, ни об их эволюции.

Но двойные звёзды не изучались бы столь серьёзно, если бы все их значение сводилось к информации о массе. Несмотря на многократные попытки поиска одиночных чёрных дыр, все кандидаты в черные дыры находятся в двойных системах. Звёзды Вольфа - Райе были изучены именно благодаря двойным звёздам.

Тесные двойные звёзды (Тесная Двойная Система - ТДС)

Среди двойных звезд выделяют так называемые тесные двойные системы (ТДС): двойные системы, в которых происходит обмен веществом между звездами. Расстояние между звездами в тесной двойной системе сравнимо с размерами самих звёзд, поэтому в таких системах возникают более сложные эффекты, чем просто притяжение: приливное искажение формы, прогрев излучением более яркого компаньона и другие эффекты.

Звездные скопления

Звёздное скопление - гравитационно связанная группа звёзд, имеющая общее происхождение и движущаяся в гравитационном поле галактики как единое целое. Некоторые звёздные скопления также содержат, кроме звёзд, облака газа и/или пыли.
По своей морфологии звёздные скопления исторически делятся на два типа - шаровые и рассеянные. В июне 2011 года стало известно об открытии нового класса скоплений, который сочетает в себе признаки и шаровых, и рассеянных скоплений.
Группы гравитационно несвязанных звёзд или слабосвязанных молодых звёзд, объединённых общим происхождением, называют звёздными ассоциациями.

Шаровые

Шаровое звёздное скопление - звёздное скопление, отличающееся от рассеянного скопления бо?льшим количеством звёзд, чётко очерченной симметричной формой, близкой к сферической, и с увеличением концентрации звёзд к центру скопления. Пространственные концентрации звёзд в центральных областях шаровых скоплений составляют?103-104 пк?3 (для сравнения - в окрестностях Солнца пространственная концентрация звёзд составляет?0,13 пк?3, то есть в окрестностях Солнца звёздная плотность в 7-70 тысяч раз меньше), количество звёзд?104-106. Диаметры шаровых скоплений составляют 20-60 пк, массы - 104-106 солнечных.

Рассеянные

Рассеянное звёздное скопление - звёздное скопление, в котором, в отличие от шарового, содержится сравнительно немного звёзд, и часто имеющее неправильную форму. В нашей и подобных ей галактиках, рассеянные скопления являются коллективными членами и входят в плоскую подсистему.
Наиболее крупные скопления (как, например, Плеяды) были известны с древнейших времен. Другие были известны как нечеткие туманные пятна и лишь с изобретением телескопа удалось разделить их на составляющие их звёзды.
У молодых рассеянных скоплений, ассоциирующихся со спиральными рукавами галактики, характерный состав. В них редко встречаются красные и жёлтые гиганты и совершенно нет красных и жёлтых сверхгигантов. В то же время белые и голубые гиганты, сами по себе являющиеся редкими видами звёзд, в рассеянных скоплениях встречаются гораздо чаще. Также, в рассеянных скоплениях чаще, чем в других местах Галактики, можно встретить и ещё более редкие звёзды - белые и голубые сверхгиганты, то есть, звёзды чрезвычайно высокой светимости и температуры, излучающие в сотни тысяч и даже миллионы раз больше, чем наше Солнце.

Галактики

Галактика- гигантская гравитационно-связанная система из звёзд и звёздных скоплений, межзвёздного газа и пыли, и тёмной материи. Все объекты в составе галактик участвуют в движении относительно общего центра масс.
Галактики - чрезвычайно далёкие объекты, расстояние до ближайших из них принято измерять в мегапарсеках, а до далёких - в единицах красного смещения z. Именно из-за удалённости различить на небе невооружённым глазом можно всего лишь три из них: туманность Андромеды (видна в северном полушарии), Большое и Малое Магеллановы Облака (видны в южном). Разрешить изображение галактик до отдельных звёзд не удавалось вплоть до начала XX века. К началу 1990-х годов насчитывалось не более 30 галактик, в которых удалось увидеть отдельные звёзды, и все они входили в Местную группу. После запуска космического телескопа «Хаббл» и ввода в строй 10-метровых наземных телескопов число галактик, в которых удалось различить отдельные звёзды, резко возросло.
Галактики отличаются большим разнообразием: среди них можно выделить сфероподобные эллиптические галактики, дисковые спиральные галактики, галактики с перемычкой (баром), карликовые, неправильные и т. д. Если же говорить о числовых значениях, то, к примеру, их масса варьируется от 107 до 1012 масс Солнца, для сравнения масса нашей галактики Млечный Путь 3?1012 масс Солнца. Диаметр галактик - от 5 до 50 килопарсек (16-160 тысяч световых лет), для сравнения диаметр нашей галактики Млечный Путь около 100 000 световых лет.

Планеты

Планета - это небесное тело, вращающееся по орбите вокруг звезды или её остатков, достаточно массивное, чтобы стать округлым под действием собственной гравитации, но недостаточно массивное для начала термоядерной реакции, и сумевшее очистить окрестности своей орбиты от планетезималей.
Планеты можно поделить на два основных класса: большие, имеющие невысокую плотность планеты-гиганты, и менее крупные землеподобные планеты, имеющие твёрдую поверхность. Согласно определению Международного астрономического союза, в Солнечной системе 8 планет. В порядке удаления от Солнца - четыре землеподобных: Меркурий, Венера, Земля, Марс, затем четыре планеты-гиганта: Юпитер, Сатурн, Уран и Нептун. В Солнечной системе также есть, по крайней мере, 5 карликовых планет: Плутон (до 2006 года считавшийся девятой планетой), Макемаке, Хаумеа, Эрида и Церера. За исключением Меркурия и Венеры, вокруг всех планет обращается хотя бы по одному спутнику.

Состав планетных систем

Экзоплане?та или внесолнечная планета - планета, обращающаяся вокруг звезды за пределами Солнечной системы. Планеты чрезвычайно малы и тусклы по сравнению со звёздами, а сами звёзды находятся далеко от Солнца (ближайшая - на расстоянии 4,22 световых года). Поэтому долгое время задача обнаружения планет возле других звёзд была неразрешимой, первые экзопланеты были обнаружены в конце 1980-х годов. Сейчас такие планеты стали открывать благодаря усовершенствованным научным методам, зачастую на пределе их возможностей.

К концу декабря 2011 года подтверждено существование 716 экзопланет в 584 планетных системах, из которых в 86 более чем одна планета. Следует отметить, что количество надёжных кандидатов в экзопланеты значительно больше. Так по проекту «Кеплер» открыто ещё более 1200 экзопланет с надёжностью около 99 %, однако для получения статуса подтверждённых требуется повторная регистрация таких планет с помощью наземных телескопов.

Объекты планетарной массы

Объект планетарной массы, ОПМ или Планемо - это небесное тело, чья масса позволяет ему попадать в диапазон определения планеты, то есть его масса больше, чем у малых тел, но недостаточна для начала термоядерной реакции по образу и подобию коричневого карлика или звезды. По определению все планеты - объекты планетарной массы, но цель этого термина в том, чтобы описать небесные тела, не соответствующие тому, что типично ожидается от планеты. Например, планеты в «свободном плавании», не обращающиеся вокруг звезд, которые могут быть «планетами-сиротами», покинувшими свою систему, или объекты, появившиеся в ходе коллапса газового облака - вместо типичной для большинства планет аккреции из протопланетного диска (их обычно называют субкоричневыми карликами).

Планета-сирота

Некоторые компьютерные модели формирования звёзд и планетарных систем предполагают, что определённые «объекты планетарной массы» могут покинуть свою систему и уйти в межзвёздное пространство. Некоторые учёные утверждали, что такие объекты уже нашли свободно блуждающими в космосе и их следует классифицировать как планеты, хотя другие предположили, что они могут быть и мало-массивными звёздами.

Планеты-спутники и планеты поясов

Некоторые крупные спутники сходны по размерам с планетой Меркурий или даже превосходят её. Например, Галилеевы спутники и Титан. Алан Стёрн утверждает, что местоположение не должно иметь для планеты значения, и только геофизические признаки должны быть приняты во внимание при присуждении объекту статуса планеты. Он предлагает термин планета-спутник для объекта размером с планету, обращающегося вокруг другой планеты. Аналогично объекты размером с планету в Поясе астероидов или Поясе Койпера также могут считаться планетами согласно Стёрну.

Кометы

Коме?та - небольшое небесное тело, имеющее туманный вид, обращающееся вокруг Солнца обычно по вытянутым орбитам. При приближении к Солнцу комета образует кому и иногда хвост из газа и пыли.

Предположительно, долгопериодические кометы залетают к нам из Облака Оорта, в котором находится огромное количество кометных ядер. Тела, находящиеся на окраинах Солнечной системы, как правило, состоят из летучих веществ (водяных, метановых и других льдов), испаряющихся при подлёте к Солнцу.

На данный момент обнаружено более 400 короткопериодических комет. Из них около 200 наблюдалось в более чем одном прохождении перигелия. Многие из них входят в так называемые семейства. Например, большинство самых короткопериодических комет (их полный оборот вокруг Солнца длится 3-10 лет) образуют семейство Юпитера. Немного малочисленнее семейства Сатурна, Урана и Нептуна (к последнему, в частности, относится знаменитая комета Галлея).

Кометы, прибывающие из глубины космоса, выглядят как туманные объекты, за которыми тянется хвост, иногда достигающий в длину нескольких миллионов километров. Ядро кометы представляет собой тело из твёрдых частиц и льда, окутанное туманной оболочкой, которая называется комой. Ядро диаметром в несколько километров может иметь вокруг себя кому в 80 тыс. км в поперечнике. Потоки солнечных лучей выбивают частицы газа из комы и отбрасывают их назад, вытягивая в длинный дымчатый хвост, который движется за ней в пространстве.

Яркость комет очень сильно зависит от их расстояния до Солнца. Из всех комет только очень малая часть приближается к Солнцу и Земле настолько, чтобы их можно было увидеть невооружённым глазом. Самые заметные из них иногда называют «большими (великими) кометами».

Астероиды

Астероид - относительно небольшое небесное тело Солнечной системы, движущееся по орбите вокруг Солнца. Астероиды значительно уступают по массе и размерам планетам, имеют неправильную форму, и не имеют атмосферы, хотя при этом и у них могут быть спутники.

Классификация астероидов

Общая классификация астероидов основана на характеристиках их орбит и описании видимого спектра солнечного света, отражаемого их поверхностью.

Группы орбит и семейства

Астероиды объединяют в группы и семейства на основе характеристик их орбит. Обычно группа получает название по имени первого астероида, который был обнаружен на данной орбите. Группы - относительно свободные образования, тогда как семейства - более плотные, образованные в прошлом при разрушении крупных астероидов от столкновений с другими объектами.

Спектральные классы

В 1975 Кларк Р. Чапмен (Clark R. Chapman), Дэвид Моррисон (David Morrison) и Бен Целлнер (Ben Zellner) разработали систему классификации астероидов, опирающуюся на показатели цветности, альбедо и характеристики спектра отражённого солнечного света. Изначально эта классификация определяла только три типа астероидов:
Класс С - углеродные, 75 % известных астероидов.
Класс S - силикатные, 17 % известных астероидов.
Класс M - металлические, большинство остальных.

Этот список был позже расширен и число типов продолжает расти по мере того, как детально изучается все больше астероидов:
Класс A- это сравнительно редкий класс астероидов во внутренней части пояса астероидов (с 2005 года астероидов этого типа было обнаружено всего 17).
Класс B- это сравнительно редкий класс астероидов, входящие в группу углеродных астероидов. Среди астероидной популяции объекты класса B преобладают главным образом во внешней части главного пояса астероидов, кроме того преобладают астероиды наклонением орбиты, в частности семейство Паллады, которое включает в себя второй по величине астероид Паллада. В них содержится исходный строительный материал, из которого формировалась наша солнечная система.
и т.д.................

Космос таит в себе множество неизведанных тайн. Взгляды человечества постоянно обращены ко Вселенной. Каждый полученный нами знак из космоса дает ответы и одновременно ставит множество новых вопросов.

Данная статья предназначена для лиц старше 18 лет

А вам уже исполнилось 18?

Какие космические тела невооруженным глазом видно с

Группа космических тел

Как называется ближайшее к

Что такое небесные тела?

Небесные тела — это объекты, наполняющие Вселенную. К космическим объектам относятся: кометы, планеты, метеориты, астероиды, звезды, которые обязательно имеют свои названия.

Предметами изучения астрономии являются космические (астрономические) небесные тела.

Размеры небесных тел, существующих во вселенском пространстве очень разные: от гигантских до микроскопических.

Структура звездной системы рассматривается на примере Солнечной. Около звезды (Солнца) передвигаются планеты. Эти объекты, в свою очередь, имеют природные спутники, пылевые кольца, а между Марсом и Юпитером образовался астероидный пояс.

30 октября 2017 года жители Свердловска будут наблюдать астероид Ирида. По научным расчетам астероид главного астероидного пояса приблизится к Земле на 127 млн километров.

На основании спектрального анализа и общих законов физики установлено, что Солнце состоит из газов. Вид Солнца в телескоп — это гранулы фотосферы, создающие газовое облако. Единственная звезда в системе производит и излучает два вида энергии. По научным расчетам диаметр Солнца в 109 раз больше диаметра Земли.

В начале 10-х годов ХХІ века мир был охвачен очередной истерией конца света. Распространялась информация о том, что «планета дьявол» несет апокалипсис. Магнитные полюса Земли сместятся в результате нахождения Земли между Нибиру и Солнцем.

Сегодня сведения о новой планете уходят на задний план и не подтверждаются наукой. Но, вместе с тем, есть утверждения о том, что Нибиру уже пролетела мимо нас, или через нас, изменив свои первичные физические показатели: сравнительно уменьшив размеры или критично изменив плотность.

Какие космические тела образуют Солнечную систему?

Солнечная система — это Солнце и 8 планет с их спутниками, межпланетная среда, а также астероиды, или карликовые планеты, объединенные в два пояса —ближний или главный и дальний или пояс Койпера. Самая крупная планета Койпера—Плутон. Такой подход дает конкретный ответ на вопрос: сколько больших планет в Солнечной системе?

Список известных больших планет системы разделяется на две группы — земную и юпитерианскую.

Все земные планеты имеют схожее строение и химический состав ядра, мантии и коры. Что дает возможность изучить процесс атмосферного образования на планетах внутренней группы.

Падение космических тел подвластно законами физики

Скорость движения Земли—30 км/с. Передвижение Земли вместе с Солнцем относительно центра галактики может стать причиной глобальной катастрофы. Траектории планет иногда пересекаются с линиями движения других космических тел, что является угрозой падения этих объектов на нашу планету. Последствия столкновений или падений на Землю могут быть очень тяжелыми. Паражающими факторами в следствие падения крупных метеоритов, как и столкновений с астероидом или кометой, будут взрывы с генерированием колоссальной энергии, и сильнейшие землетрясения.

Профилактика таких космических катастроф возможна при условии объединения усилий всего мирового сообщества.

Разрабатывая системы защиты и противостояния необходимо учитывать то, что правила поведения при космических атаках должны предусматривать возможность проявления неизвестных человечеству свойств.

Что является космическим телом? Какими характеристиками оно должно обладать?

Земля рассматривается как космическое тело, способное отражать свет.

Все видимые тела Солнечной системы отражают свет звезд. Какие объекты относятся к космическим телам? В космосе, кроме хорошо заметных больших объектов, очень много маленьких и даже крохотных. Список очень маленьких космических объектов начинается с космической пыли (100 мкм), которая является результатом выбросов газов после взрывов в атмосферах планет.

Астрономические объекты бывают разных размеров, форм и расположения относительно Солнца. Некоторые из них объединяют в отдельные группы, чтобы их легче было классифицировать.

Какие бывают космические тела в нашей галактике?

Наша Вселенная наполнена разнообразными космическими объектами. Все галактики представляют собой пустоту, наполненную разными формами астрономических тел. Из школьного курса астрономии мы знаем о звездах, планетах и спутниках. Но видов межпланетарных наполнителей много: туманности, звездные скопления и галактики, почти не изученные квазары, пульсары, черные дыры.

Большие астрономически — это звезды — горячие светоизлучающие объекты. В свою очередь они разделяются на большие и малые. В зависимости от спектра они бывают коричневыми и белыми карликами, переменными звездами и красными гигантами.

Все небесные тела можно разделить на два типа: дающие энергию (звезды), и не дающие (космическая пыль, метеориты, кометы, планеты).

Каждое небесное тело имеет свои характеристики.

Классификация космических тел нашей системы по составу:

  • силикатные;
  • ледяные;
  • комбинированные.

Искусственные космические объекты это космические объекты: пилотируемые корабли, обитаемые орбитальные станции, обитаемые станции на небесных телах.

На Меркурии Солнце движется в обратную сторону. В атмосфере Венеры, по полученным сведениям, предполагают найти земные бактерии. Земля движется вокруг Солнца со скоростью 108 000 км в час. У Марса два спутника. Юпитер имеет 60 спутников и пять колец. Сатурн сжимается на полюсах из-за быстрого вращения. Уран и Венера движутся вокруг Солнца в обратном направлении. На Нептуне есть такое явление как .

Звезда — это раскаленное газообразное космическое тело, в котором происходят термоядерные реакции.

Холодные звезды—это коричневые карлики, не имеющие достаточно энергии. Завершает список астрономических открытий холодная звезда из созвездия Волопаса CFBDSIR 1458 10ab.

Белые карлики — это космические тела с остывшей поверхностью, внутрикоторых уже не происходит термоядерный процесс, при этом они состоят из вещества высокой плотности.

Горячие звезды — это небесные светила, излучающие голубой свет.

Температура главной звезды туманности «Жук» —200 000 градусов.

След на небе, который светится, могут оставлять кометы, небольшие бесформенные космические образования оставшиеся от метеоритов, болиды, различные остатки искусственных спутников, которые входят в твердые слои атмосферы.

Астероиды иногда классифицируют как маленькие планеты. В действительности они похожи на звезды малой яркости из-за активного отражения света. Самым большим астероидом во вселенной считается Церцера из созвездия Пса.

Какие космические тела невооруженным глазом видно с Земли?

Звезды— это космические тела, которые излучают в пространство тепло и свет.

Почему в ночном небе видны планеты, которые не излучают свет? Все звезды светятся за счет выделения энергии при ядерных реакциях. Полученная энергия используется для сдерживания гравитационных сил и для световых излучений.

Но почему холодные космические объекты тоже издают свечение? Планеты, кометы, астероиды не излучают, а отражают звездный свет.

Группа космических тел

Космос наполнен телами разных размеров и форм. Эти объекты по-разному движутся относительно Солнца и других объектов. Для удобства существует определенная классификация. Примеры групп: «Кентавры» — находятся между поясом Койпера и Юпитером, «Вулканоиды» —предположительно между Солнцем и Меркурием, 8 планет системы также разделены на две: внутреннюю (земную) группу и внешнюю (юпитерианскую) группу.

Как называется ближайшее к земле космическое тело?

Как называется обращающееся вокруг планеты небесное тело? Вокруг Земли, согласно силам гравитации, двигается естественный спутник Луна. Некоторые планеты нашей системы также имеют спутники: Марс — 2, Юпитер — 60, Нептун — 14, Уран — 27, Сатурн — 62.

Все объекты, подчиненные Солнечной гравитации— часть огромной и такой непостижимой Солнечной системы.

Экзопланеты. Когда-нибудь, нога человека ступит и на их землю. Но осмелится ли человек посетить мир, получивший название Gliese 581 c?
Но давайте обо все по порядку! В далеком 2007 году ученые Европейской южной обсерватории (ESO) обнаружили новую планету – Gliese 581 c. Находится это уникальное во всех смыслах этого слова небесное тело на расстоянии 20 световых лет от нашей планеты. Год на Gliese 581 c составляет всего-навсего 13 земных дней!

Планета находиться на чрезвычайно (даже можно сказать экстремально) близком расстоянии от своей звезды – ~11 млн. км (судите сами, расстояние между нашей планетой и Солнцем 150 млн. км!). Центральная звезда данной системы носит название Gliese 581. Она является красным карликом и в три раза меньше Солнца, но, не смотря на это, на небосводе Gliese 581 c она выглядит в 20 раз больше нашего светила! Впрочем, Gliese 581 достаточно тусклая и на планете царит вечный полумрак, т.к. яркость звезды составляет ~1,3% яркости нашего Солнца.

Экстремальная близость к звезде привела к тому, что Gliese 581 с обращена к ней всегда одной стороной (в результате воздействия на нее мощнейших приливных сил)! Т.о., разные полушария, которые условно можно разделить на дневное и ночное, превратились полностью обособленные миры. И объединяет их только одно – они являют собой настоящий ад в лучших представлениях писателей фантастов прошлого и настоящего! Дневное полушарие представляет собой «раскаленную докрасна сковородку» (происходит расплавление горных пород, находящихся на поверхности), а ночное – ледяная пустыня, где температура может достигать абсолютного нуля! Это, в свою очередь, может вызвать сильные ветры в атмосфере планеты. К счастью, между этими двумя крайностями вполне может существовать «пояс жизни», где жизнь (скорее всего, достаточно примитивная), в теории, может существовать!

Жизнь на Gliese 581 с может стать настоящим испытанием. И я говорю не только про экстремальные температуры и ураганные порывы ветра! Пейзажи планеты вполне могли бы стать декорацией к какому-нибудь ужастику про космос! Дело в том, что на дневном полушарии царит красноватый полумрак (ну как в DOOM 2: Hell on Earth), а на ночном балом правит непроглядная тьма. И такой порядок вещей будет существовать на данной планете до скончания ее веков. Ещё одна интересная особенность Gliese 581 с касается растений на ее поверхности, если они, конечно, там есть. Непрекращающаяся бомбардировка инфракрасным излучением должна была привести к тому, что инопланетные растения, которым не чужд фотосинтез, постепенно приспособились к такому порядку вещей и сменили свой цвет на угольно-черный. Вы все ещё хотите ступить на Gliese 581 с?

Люди всегда любили наблюдать за космосом. В конце концов исследования звезд и небесных объектов и раскрыли нам тайну происхождения нашей планеты. Благодаря космическим открытиям мы получили возможность проверять глобальные математические теории.

Ведь то, что тяжело проверить на практике, стало возможным испытать на звездах. Но космос столь бескрайный, что в нем находится немало необычного, что заставляет перепроверять расчеты и строить новые гипотезы. О десяти самых любопытных и странных объектах в космосе мы и расскажем ниже.

Самая маленькая планета. Есть тонкая грань, которая отделяет планету от астероида. Недавно Плутон перешел из разряда первых во вторые. А в феврале 2013 года обсерватория Кеплера в 210 световых годах от нас нашла звездную систему с тремя планетами. Одна из них оказалась самой маленькой из найденных когда-либо. Сам телескоп Кеплера работает из космоса, что позволило ему сделать немало открытий. Дело в том, что наземным приборам все же мешает атмосфера. Помимо множества других планет телескоп обнаружил и Кеплер 37-b. Эта маленькая планета меньше даже Меркурия, а ее диаметр всего на 200 километров больше Луны. Возможно, скоро ее статус также оспорят, уж больно близка та пресловутая грань. Интересен и способ обнаружения кандидатов в экзопланеты, используемый астрономами. Они наблюдают за звездой и ожидают, когда ее свет слегка померкнет. Это говорит о том, что между нею и нами прошло некое тело, то есть та самая планета. Вполне логично, что при таком подходе куда легче находить большие планеты, чем маленькие. Большинство известных экзопланет своими размерами намного превышали нашу Землю. Обычно они сопоставимы были с Юпитером. Эффект затенения, который дал Кеплер 37-b было крайне трудно обнаружить, что и сделало это открытие таким важным и впечатляющим.

Пузыри Ферми в Млечном Пути. Если смотреть на нашу Галактику, Млечный Путь, в плоском изображении, как ее обычно и показывают, то она покажется огромной. Но при взгляде сбоку этот объект оказывается тонким и клочковатым. Увидеть Млечный Путь с этой стороны не удавалось, пока ученые не научились взглянуть на галактику иначе с помощью гамма-излучения и рентгеновских лучей. Оказалось, что из диска нашей галактики перпендикулярно буквально выпирают Пузыри Ферми. Длина этого космического образования около 50 тысяч световых лет или же половина всего диаметра Млечного Пути. Откуда появились Пузыри Ферми, даже НАСА пока не может дать ответ. Вполне вероятно, что это может быть остаточным излучением от сверхмассивных черных дыр в самом центре галактики. Ведь большие объемы энергии предполагают выделение гамма излучения.

Тейя. Четыре миллиарда лет назад Солнечная система была совсем другой, нежели сейчас. Это было опасное место, в котором только-только начинали формироваться планеты. Космическое пространство было заполнено множеством камней и кусков льда, что привело к многочисленным столкновениям. Одно из них по мнению большинства ученых и привело к появлению Луны. Находившаяся в зачаточном состоянии Земля столкнулась с объектом Тейя, своим размером схожим с Марсом. Эти два космических тела сошлись под острым углом. Осколки того удара на орбите Земли соединились в наш нынешний спутник. А ведь если бы столкновение было бы более прямым, и удар пришелся ближе к экватору или полюсам, то результаты могли стать куда более плачевными для формирующейся планеты - она бы полностью разрушилась.

Великая стена Слоуна. Этот космический объект невероятно огромен. Он кажется гигантским даже по сравнению с известными нам большими объектами, тем же Солнцем, к примеру. Великая стена Слоуна - одно из самых крупных образований во Вселенной. По сути это скопление галактик, растянувшееся на 1,4 миллиарда световых лет. Стена представляет собой сотни миллионов отдельных галактик, которые в общей ее структуры соединяются в кластеры. Такие скопления стали возможными благодаря зонам различных плотностей, которые появились в результате Большого Взрыва, а теперь заметны благодаря микроволновому фоновому излучению. Правда, некоторые ученые считают, что Великую стену Слоуна нельзя считать единой структурой из-за того, что в ней не все галактики связаны между собой силой гравитации.

Самая маленькая чёрная дыра. Самым страшным объектом в космосе является черная дыра. В компьютерных играх их даже прозвали «последним боссом» Вселенной. Черная дыра - это мощный объект, который поглощает даже движущийся со скоростью в 300 тысяч километров в секунду свет. Ученые нашли немало таких страшных объектов, масса некоторых в миллиарды раз была больше массы Солнца. Но совсем недавно была найдена крошечная черная дыра, самая маленькая. Предыдущий рекордсмен все же был тяжелее нашей звезды в 14 раз. По нашим меркам дыра эта была все еще большой. Новый же рекордсмен получил имя IGR и он всего втрое тяжелее Солнца. Эта масса минимальна для того, чтобы дыра поймала звезду после ее смерти. Если бы такой объект был бы еще меньше, то он бы постепенно разбух, а потом стал терять свои внешние слои и материи.

Самая маленькая галактика. Объемы галактик обычно поражают. Это огромное число звезд, которые живут благодаря ядерным процессам и гравитации. Галактики настолько светлые и большие, что некоторые можно увидеть даже невооруженным взглядом, невзирая на расстояние. Но преклонение перед размерами мешает пониманию, что галактики могут быть совсем иными. Примером такого рода может являться Segue2. В этой галактике находится всего около тысячи звезд. Это крайне мало, с учетом сотен миллиардов светил в нашем Млечном Пути. Общая энергия всей галактики превышает энергию Солнца всего в 900 раз. А ведь наше светило по космическим масштабам ничем не выделяется. Новые возможности телескопов помогут науке найти и других крох, наподобие Segue2. Это очень полезно, ведь их появление было научно предсказано, вот только увидеть их воочию долго не удавалось.

Самый крупный ударный кратер. С момента начала изучения Марса ученым не давала покой одна деталь - уж больно сильно отличались два полушария планеты. По последним данным такая диспропорция оказалась результатом столкновения-катастрофы, которая и изменила навсегда облик планеты. В северном полушарии был найден Кратер Бореалиса, который стал самым большим из найденных в данный момент на Солнечной системе. Благодаря этому месту стало известно, что у Марса было весьма бурное прошлое. А раскинулся кратер на значительную часть планеты, занимая минимум 40 процентов и площадь диаметром в 8500 километров. И второй по величине известный кратер тоже был найден на Марсе, вот только его размеры уже вчетверо меньше, чем у рекордсмена. Чтобы на планете образовался такой кратер, столкновение должно было случиться с чем-то из-за пределов нашей системы. Считается, что повстречавшийся Марсу объект был даже больше, чем Плутон.

Ближайший перигелий в Солнечной системе. Меркурий, безусловно, самый крупный из ближайших к Солнцу объектов. Но есть и куда меньшие астероиды, которые вращаются ближе к нашей звезде. Перигелием называется ближайшая к ней точка орбиты. В невероятной близости к Солнцу летает астероид 2000 BD19, его орбита наименьшая. Перигелий этого объекта составляет 0,092 астрономической единицы (13,8 млн км). Можно не сомневаться, что на астероиде HD19 очень жарко - температура там такая, что цинк и другие металлы просто расплавились бы. И изучение такого объекта очень важно для науки. Ведь так можно понять, как разные факторы могут изменить орбитальную ориентацию тела в космосе. Одним из таких факторов является известная всем общая теория относительности, созданная Альбертом Эйнштейном. Именно поэтому внимательное изучение околоземного объекта поможет человечеству понять, насколько же эта важная теория имеет практическое применение.

Самый старый квазар. Некоторые черные дыры имеют внушительную массу, что и логично с учетом поглощения ими всего, что только попадается по пути. Когда астрономы открыли объект ULAS J1120+0641, то они крайне удивились. Масса этого квазара в два миллиарда раз больше, чем у Солнца. Но внушает интерес даже не объемы этой черной дыры, выпускающей в космос энергию, а ее возраст. ULAS - самый старый квазар за всю историю наблюдения за космосом. Он появился уже через 800 миллионов лет после Большого Взрыва. И это внушает уважение, ведь такой возраст предполагает путешествие света от этого объекта до нас в 12,9 миллиардов лет. Ученые теряются в догадках, за счет чего же могла разрастись так черная дыра, ведь в то время поглощать было еще нечего.

Озёра Титана. Как только зимние тучи рассеялись, и наступила весна, космический аппарат Кассини смог на северном полюсе Титана отлично сфотографировать озера. Только вот вода в таких неземных условиях существовать не может, а вот для выхода на поверхность спутника жидкого метана и этана температура подходит, как нельзя кстати. Космический аппарат находился на орбите Титана еще с 2004 года. Но это первый раз, когда тучи над полюсом рассеялись настолько, чтобы его можно было хорошо увидеть и сфотографировать. Оказалось, что основные озера обладают шириной в сотни километров. Самое же крупное, Море Кракена своей площадью равно Каспийскому морю и Верхним озером вместе взятым. Для Земли существование жидкой среды стало основой для появления жизни на планете. А вот моря углеводородных соединений - другое дело. Вещества в таких жидкостях не могут растворяться так же хорошо, как и в воде.

Космос таинственный и прекрасный, одновременно весьма странный

Там умирают, рождаются и снова гаснут тысячи звезд, а галактики вращаются вокруг сверхмассивных черных дыр, которые засасывают медленно в себя все, что их окружает. Он полон странных вещей, которые понять человеческий разум не в состоянии.

Удивительная туманность Красный Квадрат

Все космические объекты обычно имеют округлую форму: звезды, планеты, галактики, орбиту. Вдруг туманность, которая напоминает квадрат. Ученые были крайне удивлены, обнаружив форму, которой в космосе быть не должно.

Присмотревшись внимательно, можно обнаружить форму в поперечнике, которую образуют в точке соприкосновения два конуса. Но и таких конусов в ночном небе немного. Светится туманность в форме часов песочных весьма ярко, потому, что в ее центре (где конусы соприкасаются), находится очень яркая звезда. Возможно, это сверхновая звезда, образованная звездой взорвавшейся, поэтому интенсивно светятся кольца оснований конусов.

Столпы творения – потрясающе красивые образования в созвездии Орла

Когда то Адамс Дуглас написал, что космос настолько большой, что трудно вообразить. Расстояние до космических тел измеряется в световых годах. А эта единица означает огромное расстояние: свет, который во вселенной движется быстрее всего, проходит его только за год. Получается, что, разглядывая космические объекты, мы видим их в прошлом. Например, Столпы творения. Понадобится семь тысяч лет, чтобы свет из этого созвездия достиг Земли, поэтому человек видит то, что было тому назад указанное время. И часто это очень странно. Ведь Столпы творения по утверждениям ученых уничтожены были шесть тысяч лет назад, и сегодня их уже не существует, но мы видим их.

Все в космосе движется по орбитам, вокруг своих осей или мчится сквозь пространство. Поэтому из-за мощнейших сил притяжения происходят столкновения галактик, состоящих их миллиардов звезд. К счастью такие катастрофы случаются очень редко, потому что огромный космос, достаточно пуст.

Проблема горизонта

Несмотря на огромные знания, космос по-прежнему остается загадкой. Например, измерив, радиационный фон в точке на востоке неба, а затем – в отдаленной от нее на 28 миллиардов световых лет, точке на западе, мы будем удивлены, одинаковой температурой, которую имеют их фоновые излучения.Теория инфляции, предполагающая, что возникла Вселенная в результате Большого Взрыва, объясняет это не растягиванием краев вселенной, а растягиванием в доли секунды, наподобие жевательной резинки, пространство-времени.

Убийца - черная дыра

В непосредственной близости к ним, странно начинает вести себя материал. Если представить себя, втянутым в черную дурру, то, значит, оставшееся время пребывать в вечности, крича безнадежно в пустоте тоннеля. Хотя, стоп. Этой возможности тоже не будет из-за чудовищной гравитации, которая тем сильнее, чем ближе источник ее, который на близких дистанциях способен менять даже, к примеру, человеческое тело. Если представить, что в черную дыру ногами вперед упал человек, то он заметит, как тело превращается в «спагетти», которые затягиваются в центр дыры.

Вселенная и клетки мозга

Физикам удалось создать имитацию формирования Вселенной после Большого Взрыва. В центре – ярко желтого цвета галактик, упакованных очень плотно. По краям – сеть менее плотных галактик, темной материи, звезд и прочих небесных тел.

Похожую картину увидели студенты, обучающиеся в Университете Брандоса, разглядывавшие под микроскопом мышиный мозг: нейроны желтого цвета связаны «сетью» красных соединений. Похоже на то, что в действительности Вселенная представляет собой некую клетку внутри другой вселенной.

Недостающие барионы

По теории Большого Взрыва полной остановки расширение вселенной не произойдет, поскольку этому помешает мощнейшее гравитационное притяжение. Однако, планеты, туманности, звезды, галактики, т.е. так называемая, барионная материя - это только десятая часть всей материи, которая должна существовать в космосе, в том числе материя черная (пропавшая). До сих пор странное отсутствие барионов не может объяснить ни одна теория. Самая из них распространенная говорит, что межгалактические среды – атомы, газ дисперсный, составляют эту пропавшую материю. Но, даже приняв это, остается огромное число барионов пропавших «без вести». И нет пока понятия, куда девалась материя, которая должна на самом деле быть.

Холодные звезды

Никто не сомневается, что звезды горячие. Это абсолютно логично. Но и холодные звезды, называемые коричневыми карликами, в космосе не редкость. Недавно же обнаружены еще и Y-карлики – подвид семейства коричневых карликов, которые холоднее, чем температура тела человека. Искать их трудно, потому что они не выделяют видимого света. Предполагают, что они и являются исчезнувшей из Вселенной «черной материей».

Всем понятно, что температура тела становится меньше по мере его удаления от источника тепла. Но, тогда почему солнечная корона (некая атмосфера) в двести раз горячее, чем температура солнечной поверхности?

Ученые считают, что причина кроется во вкраплениях магнитного поля, появляющимися на поверхности Светила и исчезающими. Линии магнитного поля пересекаться не могут, поэтому, когда они оказываются близко, вкраплениям приходится перестраиваться, что и приводит к нагреванию короны. Но, согласны с таким объяснение не все. Да и никто не может ответить, почему вообще появляются эти вкрапления.

Черная дыра Эридана

Тысячи галактик попали в объектив камеры телескопа Хаббл. Но, глядя на созвездие Эридан, ничего не видно – просто чернота, простирающаяся на миллионы световых лет. По одной из теорий, пустоту заполняет черная дыра. Вокруг нее все галактические скопления, вращающиеся с огромной скоростью, что и дает иллюзию расширяющейся вселенной. Но другую, обнаруженную в южном небе, пустоту эта теория не объясняет. Ее ширина более трех миллионов световых лет. И сформироваться она не могла обычным дрейфом галактик.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.