Какие виды центрального торможения вы знаете. Торможение

Физиология - наука, которая дает нам представление о человеческом организме и протекающих в нем процессах. Одним из таких процессов является торможение ЦНС. Оно представляет собой процесс, который порождается возбуждением и выражается в предупреждении появления другого возбуждения. Это способствует обеспечению нормальной деятельности всех органов и защищает нервную систему от перевозбуждения. Сегодня известно множество видов торможения, которые играют важную роль в работе организма. Среди них выделяют и реципрокное торможение(сочетанное), которое образуется в определенных тормозных клетках.

Виды центрального первичного торможения

Первичное торможение наблюдается в определенных клетках. Они находятся возле тормозных нейронов, которые производят нейротрансмиттеры. В ЦНС бывают такие виды торможения первичного: возвратное, реципрокное, латеральное торможение. Рассмотрим, как работает каждый из них:

  1. Латеральное торможение характеризуется затормаживанием нейронов тормозной клеткой, что находится около них. Часто этот процесс наблюдается между такими нейронами сетчатки глаз, как биполярные и ганглиозные. Это способствует созданию условий для отчетливого видения.
  2. Реципрокное - характеризуется взаимной реакцией, когда одни нервные клетки производят торможение других через вставочный нейрон.
  3. Возвратное - обуславливается торможением нейроном клетки, что тормозит этот же нейрон.
  4. Возвратное облегчение характеризуется понижением реакции иными тормозными клетками, при котором наблюдается уничтожение этого процесса.

В простых нейронах ЦНС происходит после возбуждения притормаживание, появляются следы гиперполяризации. Таким образом, реципрокное и возвратное торможение в происходят благодаря включению в цепь спинномозгового рефлекса особого тормозного нейрона, который именуется клеткой Реншоу.

Описание

В ЦНС постоянно работают два процесса - торможение и возбуждение. Торможение при этом направлено на прекращение или ослабление определенной деятельности в организме. Оно образуется при встрече двух возбуждений - тормозящего и тормозного. Реципрокное торможение представляет собой то, при котором возбуждение одних нервных клеток тормозит другие клетки через промежуточный нейрон, что имеет связь только с другими нейронами.

Экспериментальное открытие

Реципрокное торможение и возбуждение в ЦНС были выявлены и изучены Веденским Н.Е. Он проводил эксперимент на лягушке. На кожном покрове задней ее конечности осуществлялось возбуждение, которое вызывало сгиб и выпрямление конечности. Таким образом, согласованность этих двух механизмов представляет собой общую особенность всей нервной системы и наблюдается в головном и спинном мозге. Было установлено в ходе экспериментов, что совершение каждого действия движения основано на взаимосвязи торможения и возбуждения на одних и тех же нервных клетках ЦНС. Введенский Н.В говорил о том, что при возникновении возбуждения в какой-либо точке ЦНС вокруг этого очага появляется индукция.

Сочетанное торможение по Ч. Шеррингтону

Шеррингтон Ч. утверждает, что обеспечении полной согласованности конечностей и мышц. Этот процесс дает возможность конечностям сгибаться и выпрямляться. Когда человек сводит конечность, в колене образуется возбуждение, что переходит в спинной мозг на центр сгибательных мышц. Одновременно в центре разгибательных мышц появляется реакция замедления. Так происходит и наоборот. Запускается это явление при двигательных актах, имеющих большую сложность (прыжок, бег, ходьба). Когда человек идет, он поочередно сгибает и выпрямляет ноги. При согнутой правой ноге в центре сустава появляется возбуждение, в ином направлении происходит процесс торможения. Чем сложнее двигательные акты, тем большее число нейронов, которые несут ответственность за определенные мышечные группы, находятся в реципрокных отношениях. Таким образом, возникает благодаря работе вставочных нейронов спинного мозга, что отвечают за процесс торможения. Координированные отношения нейронов непостоянны. Изменчивость отношений между двигательными центрами дает возможность человеку делать непростые движения, например, играть на музыкальных инструментах, танцевать и прочее.

Реципрокное торможение: схема

Если рассматривать схематически этот механизм, то он имеет следующий вид: раздражитель, который поступает от афферентной части через обычный (вставочный) нейрон, вызывает возбуждение в нервной клетке. Нервная клетка приводит в движение мышцы-сгибатели, а через клетку Реншоу тормозит нейрон, что заставляет двигаться мышцы-разгибатели. Таким вот образом протекает координированное движение конечности.

Разгибание конечности происходит наоборот. Так, обеспечивает образование реципрокных отношений между центрами нервов определенных мышц благодаря клеткам Реншоу. Такое торможение является практичным с точки зрения физиологии, поскольку делает легким движение колена без какого-либо вспомогательного контролирования (произвольного или непроизвольного). Если бы этого механизма не было, то появилась бы механическая борьба мышц человека, судороги, а не скоординированные акты движения.

Суть сочетанного торможения

Реципрокное торможение позволяет организму делать произвольные движения конечностями: как легкие, так и достаточно сложные. Суть этого механизма заключается в том, что нервные центры противоположного действия находятся одновременно в противоположном состоянии. Например, при возбуждении центра вдоха центр выдоха заторможен. Если сосудосуживающий центр находится в возбужденном состоянии, то сосудорасширяющий в это время пребывает в заторможенном. Таким образом, сопряженное торможение центров рефлексов противоположного действия обеспечивает координацию движений и осуществляется с помощью специальных тормозных нервных клеток. Возникает согласованный сгибательный рефлекс.

Торможение по Вольпе

Вольпе в 1950 году было сформулировано предположение о том, что тревога представляет собой стереотип поведения, который закреплен в результате реакций на ситуации, которые ее вызывают. Связь между стимулом и реакцией может быть ослаблена в случае действия фактора, который тормозит тревогу, например, расслабление мышц. Вольпе назвал этот процесс «». Он лежит сегодня в основе метода поведенческой психотерапии - систематической десенситизации. В ее ходе пациента вводят во множество представляемых ситуаций, одновременно вызывается мышечное расслабление при помощи транквилизаторов или гипноза, которое снижает уровень тревоги. По мере закрепления отсутствия тревоги в легких ситуациях, пациент переходит к сложным ситуациям. В результате терапии человек приобретает навыки самостоятельно контролировать тревожные ситуации в реальности при помощи техники мышечного расслабления, которой он овладел.

Таким образом, реципрокное торможение было открыто Вольпе и широко применяется сегодня в психотерапии. Суть метода заключается в том, что происходит уменьшение силы определенной реакции под воздействием иной, которая была вызвана одновременно. Этот принцип находится в основе конт-обуславливания. Сочетанное торможение обуславливается тем, что реакция страха или тревоги затормаживается эмоциональной реакцией, которая возникает одновременно и является несовместимой со страхом. Если такое торможение происходит периодически, то условная связь между ситуацией и реакцией тревоги ослабевает.

Метод психотерапии Вольпе

Джозеф Вольпе обратил внимание на то, что привычкам свойственно угасать в случае развития новых привычек в одинаковой ситуации. Он использовал термин «реципрокное торможение» для описания ситуаций, где появление новых реакций приводит к угасанию ранее возникавших реакций. Так, при одновременном присутствии стимулов к появлению несовместимых реакций, развитие доминирующей реакции в определенной ситуации предполагает сопряженное торможение других. На основании этого он разработал метод лечения тревожности и страхов у людей. Этот способ предполагает нахождение тех реакций, что подходят для возникновения реципрокного торможения реакций страха.

Вольпе выделял следующие реакции, что несовместимы с тревогой, применение которых даст возможность изменить поведение человека: реакции ассертивные, сексуальные, релаксация и «облегчение тревоги», а также дыхательные, моторные, медикаментозно усиленные реакции и те, что вызваны беседой. На основании всего этого были разработаны различные техники и приемы в психотерапии при лечении тревожных пациентов.

Итоги

Таким образом, на сегодняшний день учеными объяснен рефлекторный механизм, который использует реципрокное торможение. Согласно этому механизму нервные клетки возбуждают тормозные нейроны, которые находятся в спинном мозге. Это все способствует координированному движению конечностей у человека. Человек имеет способность совершать различные сложные двигательные акты.

Явление центрального торможения было открыто И.М.Сеченовым в 1862 г. Он обнаружил, что если на поперечный разрез зрительных бугров лягушки наложить кристаллик поваренной соли или подействовать электрическим слабым током, то время рефлекса Тюрка резко удлиняется (рефлекс Тюрка - сгибание лапки при погружении ее у в кислоту). Вскоре были открыты новые факты, демонстрирующие явления торможения в ЦНС. Гольц показал, что рефлекс Тюрка затормаживается при сдавливании пинцетом другой лапки, Шеррингтон доказал наличие торможения рефлекторного сокращения разгибателя при осуществлении сгибательного рефлекса. Было доказано, что при этом интенсивность рефлекторного торможения зависит от соотношения силы возбуждающего и тормозящего раздражителей.

В центральной нервной системе существует несколько способов торможения, имеющих разную природу и разную локализацию. но в принципе основанных на одном механизме - увеличении разницы между критическим уровнем деполяризации и величиной мембранного потенциала нейронов.

1. Постсинаптическое торможение. Тормозные нейроны . В настоящее время установлено, что в ЦНС наряду с возбуждающими нейронами существуют и особые тормозные нейроны. Примером может служить т.н. клетка Реншоу в спинном мозге. Реншоу открыл, что аксоны мотонейронов перед выходом из спинного мозга дают одну или несколько коллатералей, которые заканчиваются на особых клетках, чьи аксоны образуют тормозные синапсы на мотонейронах данного сегмента. Благодаря этому возбуждение, возникающее в мотонейроне, по прямому пути распространяется на периферию к скелетной мышце, а по коллатерали активирует тормозную клетку, которая подавляет дальнейшее возбуждение мотонейрона. Это механизм, автоматически охраняющий нервные клетки от чрезмерного возбуждения. Торможение, осуществляющееся при участии клеток Реншоу, получило название возвратного постсинаптического торможения. Тормозным медиатором у клетки Реншоу является глицин.

Нервные импульсы, возникающее при возбуждении тормозящих нейронов, не отличаются от потенциалов действия обычных возбуждающих нейронов. Однако в нервных окончаниях тормозящих нейронов под влиянием этого импульса выделяется медиатор, который не деполяризует, а, наоборот, гиперполяризует постсинаптическую мембрану. Эта гиперполяризация регистрируется в форме тормозного постсинаптического потенциала (ТПСП) - электроположительной волны. ТПСП ослабляет возбудительный потенциал и препятствует тем самым достижению критического уровня деполяризации мембраны, необходимого для возникновения распространяющегося возбуждения. Постсинаптическое торможение можно устранить стрихнином, который блокирует тормозные синапсы.



2.Посттетаническое торможение . Особым видом торможения является такое, которое возникает в случае, если после окончания возбуждения в клетке возникает сильная гиперполяризация мембраны. Возбуждающий постсинаптический потенциал в этих условиях оказывается недостаточным для критической деполяризации мембраны, и генерации распространяющегося возбуждения. Причина такого торможения в том, что следовые потенциалы способны к суммации, и после серии частых импульсов возникает суммация положительного следового потенциала.

3.Пессимальное торможение . Торможение деятельности нервной клетки может осуществляться и без участия особых тормозных структур. В этом случае оно возникает в возбуждающих синапсах в результате сильной деполяризации постсинаптической мембраны под влиянием слишком частых импульсов (как пессимум в нервно-мышечном препарате). К пессимальному торможению особо склонны промежуточные нейроны спинного мозга, нейроны ретикулярной формации. При стойкой деполяризации в них наступает состояние, подобное катодической депрессии Вериго.

4.Пресинаптическое торможение . Оно открыто в ЦНС сравнительно недавно, поэтому изучено меньше. Пресинаптическое торможение локализуется в пресинаптических терминалях перед синаптической бляшкой. На пресинаптических терминалях располагаются окончания аксонов других нервных клеток, образующих здесь аксо-аксональные синапсы. Медиаторы их деполяризуют мембрану терминалей и приводят в состояние, подобное катодической депрессии Вериго. Это обусловливает частичную или полную блокаду проведения по нервным волокнам возбуждающих импульсов, идущих к нервным окончаниям. Пресинаптическое торможение обычно длительное.

Торможение (физиология)

Торможение - в физиологии - активный нервный процесс, вызываемый возбуждением и проявляющийся в угнетении или предупреждении другой волны возбуждения. Обеспечивает (вместе с возбуждением) нормальную деятельность всех органов и организма в целом. Имеет охранительное значение (в первую очередь для нервных клеток коры головного мозга), защищая нервную систему от перевозбуждения.

И. П. Павлов называл иррадиацию торможения по коре больших полушарий головного мозга «проклятым вопросом физиологии».

Центральное торможение

Центральное торможение открыто в 1862 г. И. М. Сеченовым . В процессе опыта он удалил у лягушки головной мозг на уровне зрительных бугров и определял время сгибательного рефлекса. Затем на зрительные бугры помещался кристалл соли в результате чего наблюдалось увеличение продолжительности времени рефлекса. Это наблюдение позволило И. М. Сеченову высказать мнение о явлении торможения в ЦНС. Данный тип торможения называют сеченовским или центральным .

Ухтомский объяснил результаты с позиции доминанты. В зрительных буграх - доминанта возбуждения, которая подавляет действие спинного мозга.

Введенский объяснил результаты с позиции отрицательной индукции. Если в центральной нервной системе возникает возбуждение в определенном нервном центре, то вокруг очага возбуждения индуцируется торможение. Современное объяснение: при раздражении зрительных бугров возбуждается каудальный отдел ретикулярной формации. Эти нейроны возбуждают тормозные клетки спинного мозга (клетки Реншоу ), которые тормозят активность альфа-мотонейронов спинного мозга.

Первичное торможение

Первичное торможение возникает в специальных тормозных клетках, примыкающих к тормозному нейрону. При этом тормозные нейроны выделяют соответствующие нейромедиаторы.

Виды первичного торможения

    Постсинаптическое - основной вид первичного торможения, вызывается возбуждением клеток Реншоу и вставочных нейронов. При этом типе торможения происходит гиперполяризация постсинаптической мембраны, что и обуславливает торможение. Примеры первичного торможения:

    • Возвратное - нейрон воздействует на клетку, которая в ответ тормозит этот же нейрон.

      Реципрокное - это взаимное торможение, при котором возбуждение одной группы нервных клеток обеспечивает торможение других клеток через вставочный нейрон .

      Латеральное - тормозная клетка тормозит расположенные рядом нейроны. Подобные явления развиваются между биполярными и ганглиозными клеткамисетчатки , что создает условия для более четкого видения предмета.

      Возвратное облегчение - нейтрализация торможения нейрона при торможении тормозных клеток другими тормозными клетками.

    Пресинаптическое - возникает в обычных нейронах, связано с процессом возбуждения.

Вторичное торможение

Вторичное торможение возникает в тех же нейронах, которые генерируют возбуждение.

Виды вторичного торможения

    Пессимальное торможение - это вторичное торможение, которое развивается в возбуждающих синапсах в результате сильной деполяризации постсинаптической мембраны под действием множественной импульсации.

    Торможение вслед за возбуждением возникает в обычных нейронах и также связано с процессом возбуждения. В конце акта возбуждения нейрона в нем может развиваться сильная следовая гиперполяризация. В то же время возбуждающий постсинаптический потенциал не может довести деполяризацию мембраны докритического уровня деполяризации , потенциалзависимые натриевые каналы не открываются и потенциал действия не возникает.

Периферическое торможение

Открыто братьями Вебер в 1845 г. В качестве примера можно привести торможение деятельности сердца (снижение ЧСС ) при раздражении блуждающего нерва .

Условное и безусловное торможение

Термины «условное» и «безусловное» торможение предложены И. П. Павловым.

Условное торможение

Условное, или внутреннее, торможение - форма торможения условного рефлекса, возникающее при неподкреплении условных раздражителей безусловными. Условное торможение является приобретенным свойством и вырабатывается в процессе онтогенеза. Условное торможение является центральным торможением и ослабевает с возрастом.

Безусловное торможение

Безусловное (внешнее) торможение - торможение условного рефлекса, возникающее под действием безусловных рефлексов (например, ориентировочного рефлекса ). И. П. Павлов относил безусловное торможение к врожденным свойствам нервной системы, то есть безусловное торможение является формой центрального торможения.

Торможение

Координирующая функция локальных нейронных сетей помимо усиления может выражаться и в ослаблении слишком интенсивной активности нейронов за счет их торможения.

Рис.8.1 .Реципрокное (А), пресинаптическое (Б) и возвратное (В) торможение в локальных нейронных цепях спинного мозга

1 - мотонейрон; 2 - тормозный интернейрон; 3 - афферентные терминали.

Торможение , как особый нервный процесс, характеризуется отсутствием способности к активному распространению по нервной клетке и может быть представлено двумя формами - первичным и вторичным торможением.

Первичное торможение обусловлено наличием специфических тормозных структур и развивается первично без предварительного возбуждения. Примером первичного торможения является так называемое реципрокное торможение мыщц-антагонистов , обнаруженное в спинальных рефлекторых дугах. Суть этого явления состоит в том, что если активируются проприорецепторы мышцы-сгибателя, то они через первичные афференты одновременно возбуждают мотонейрон данной мышцы-сгибателя и через коллатераль афферентного волокна тормозный вставочный нейрон. Возбуждение вставочного нейрона приводит к постсинаптическому торможению мотонейрона антагонистической мышцы-разгибателя, на теле которого аксон тормозного интернейрона формирует специализированные тормозные синапсы. Реципрокное торможение играет важную роль в автоматической координации двигательных актов.

Другим примером первичного торможения является открытое Б. Реншоу возвратное торможение . Оно осуществляется в нейронной цепи, которая состоит из мотонейрона и вставочного тормозного нейрона - клетки Реншоу . Импульсы от возбужденного мотонейрона через отходящие от его аксона возвратные кол-латерали активируют клетку Реншоу, которая в свою очередь вызывает торможение разрядов данного мотонейрона. Это торможение реализуется за счет функции тормозных синапсов, которые клетка Реншоу образует на теле активирующего ее мотонейрона. Таким образом, из двух нейронов формируется контур с отрицательной обратной связью, позволяющий стабилизировать частоту разрядов моторной клетки и подавить идущую к мышцам избыточную импульсацию.

В ряде случаев клетки Реншоу формируют тормозные синапсы не только на активирующих их мотонейронах, но и на соседних мотонейронах со сходными функциями. Осуществляемое через эту систему торможение окружающих клеток называется латеральным .

Торможение по принципу отрицательной обратной связи встречается не только на выходе, но и на входе моторных центров спинного мозга. Явление подобного рода описано в моносинаптических соединенях афферентных волокон со спинальными мотонейронами, торможение которых при данной ситуации не связано с изменениями в постсинаптической мембране. Последнее обстоятельство позволило определить данную форму торможения как пресинаптическое . Оно обусловлено наличием вставочных тормозных нейронов, к которым подходят коллатерали афферентных волокон. В свою очередь, вставочные нейроны формируют аксо-аксональные синапсы на афферентных терминалях, являющихся пресинаптическими по отношению к мотонейронам. В случае избыточного притока сенсорной информации с периферии происходит активация тормозных интернейронов, которые через аксо-аксональные синапсы вызывают деполяризацию афферентных термина-леи и, таким образом, уменьшают количество выделяемого из них медиатора, а следовательно, и эффективность синаптической передачи. Электрофизиологическим показателем этого процесса является снижение амплитуды регистрируемых от мотонейрона ВПСП. Вместе с тем никаких признаков изменений ионной проницаемости или генерации ТПСП в мотонейронах не наблюдается.

Вопрос о механизмах пресинаптического торможения является довольно сложным. По-видимому, медиатором в тормозном аксо-аксональном синапсе является гамма-аминомасляная кислота, которая вызывает деполяризацию афферентных терминалей за счет увеличения проницаемости их мембраны для ионов С1-. Деполяризация снижает амплитуду потенциалов действия в афферентных волокнах и тем самым уменьшает квантовый выброс медиатора в синапсе. Другой возможной причиной деполяризации терминалей может быть повышение наружной концентрации ионов К+ при длительной активации афферентных входов. Следует отметить, что феномен пресинаптического торможения обнаружен не только в спинном мозгу, но и в других отделах ЦНС.

Исследуя координирующую роль торможения в локальных нейронных цепях, следует упомянуть еще об одной форме торможения - вторичном торможении , которое возникает без участия специализированных тормозных структур как следствие избыточной активации возбуждающих входов нейрона. В специальной литературе эту форму торможения определяют как торможение Введенского , который открыл его в 1886 г. при исследовании нервно-мышечного синапса.

Торможение Введенского играет предохранительную роль и возникает при чрезмерной активации центральных нейронов в полисинаптических рефлекторных дугах. Оно выражается в стойкой деполяризации клеточной мембраны, превышающей критический уровень и вызывающей инактивацию Na-каналов, ответственных за генерацию потенциалов действия. Таким образом, процессы торможения в локальных нейронных сетях уменьшают избыточную активность и участвуют в поддержании оптимальных режимов импульсной активности нервных клеток.

ТОРМОЖЕНИЕ В ЦНС. ВИДЫ И ЗНАЧЕНИЕ.

Проявление и осуществление рефлекса возможно только при ограничении распространения возбуждения с одних нервных центров на другие. Это достигается взаимодействием возбуждения с другим нервным процессом, противоположным по эффекту процессом торможения.

Почти до середины XIX века физиологи изучали и знали только один нервный процесс - возбуждение.

Явления торможения в нервных центрах, т.е. в центральной нервной системе были впервые открыты в 1862 году И.М.Сеченовым ("сеченовское торможение”). Это открытие сыграло в физиологии не меньшую роль, чем сама формулировка понятия рефлекса, так как торможение обязательно участвует во всех без исключения нервных актах. И.М.Сеченов обнаружил явление центрального торможения при раздражении промежуточного мозга теплокровных. В 1880 году немецкий физиолог Ф.Гольц установил торможение спинальных рефлексов. Н.Е. Введенский в результате серий опытов по парабиозу вскрыл интимную связь процессов возбуждения и торможения и доказал, что природа этих процессов едина.

Торможение - местный нервный процесс, приводящий к угнетению или предупреждению возбуждения. Торможение является активным нервным процессом, результатом которого служит ограничение или задержка возбуждения. Одна из характерных черт тормозного процесса- отсутствие способности к активному распространению по нервным структурам.

В настоящее время в центральной нервной системе выделяют два вида торможения:торможение центральное (первичное), являющееся результатом возбуждения (активации) специальных тормозных нейронов иторможение вторичное, которое осуществляется без участия специальных тормозных структур в тех самых нейронах в которых происходит возбуждение.

Центральное торможение(первичное) - нервный процесс, возникающий в ЦНС и приводящий к ослаблению или предотвращению возбуждения. Согласно современным представлениям центральное торможение связано с действием тормозных нейронов или синапсов, продуцирующих тормозные медиаторы (глицин, гаммааминомасляную кислоту), которые вызывают на постсинаптической мембране особый тип электрических изменений, названных тормозными постсинаптическими потенциалами (ТПСП) или деполяризацию пресинаптического нервного окончания, с которым контактирует другое нервное окончание аксона. Поэтому выделяют центральное (первичное) постсинаптическое торможение и центральное (первичное) пресинаптическое торможение.

Постсинаптическое торможение (лат. post позади, после чего-либо + греч. sinapsis соприкосновение, соединение) - нервный процесс, обусловленный действием на постсинаптическую мембрану специфических тормозных медиаторов (глицин, гаммааминомаслянная кислота), выделяемых специализированными пресинаптическими нервными окончаниями. Медиатор, выделяемый ими, изменяет свойства постсинаптической мембраны, что вызывает подавление способности клетки генерировать возбуждение. При этом происходит кратковременное повышение проницаемости постсинаптической мембраны к ионам К+ или CI, вызывающее снижение ее входного электрического сопротивления и генерацию тормозного постсинаптического потенциала (ТПСП). Возникновение ТПСП в ответ на афферентное раздражение обязательно связано с включением в тормозной процесс дополнительного звена - тормозного интернейрона, аксональные окончания которого выделяют тормозной медиатор. Специфика тормозных постсинаптических эффектов впервые была изучена на мотонейронах млекопитающих (Д. Экклс, 1951). В дальнейшем первичные ТПСП были зарегистрированы в промежуточных нейронах спинного и продолговатого мозга, в нейронах ретикулярной формации, коры больших полушарий, мозжечка и таламических ядер теплокровных животных.

Известно, что при возбуждении центра сгибателей одной из конечностей центр ее разгибателей тормозится и наоборот. Д. Экклс выяснил механизм этого явления в следующем опыте. Он раздражал афферентный нерв, вызывающий возбуждение мотонейрона, иннервирующего мышцу - разгибатель.

Нервные импульсы, дойдя до афферентного нейрона в спинномозговом ганглии, направляются по его аксону в спинном мозге по двум путям: к мотонейрону, иннервирующему мышцу - разгибатель, возбуждая ее и по коллатерам к промежуточному тормозному нейрону, аксон которого контактирует с мотонейроном иннервирующим мышцу - сгибатель, вызывая таким образом торможение антагонистической мышцы. Этот вид торможения был обнаружении в промежуточных нейронах всех уровней центральной нервной системы при взаимодействии антагонистических центров. Он был назван поступательным постсинаптическим торможением . Этот вид торможения координирует, распределяет процессы возбуждения и торможения между нервными центрами.

Возвратное (антидромное) постсинаптическое торможение (греч. antidromeo бежать в противоположном направлении) - процесс регуляции нервными клетками интенсивности поступающих к ним сигналов по принципу отрицательной обратной связи. Он заключается в том, что коллатерали аксонов нервной клетки устанавливают синаптические контакты со специальными вставочными нейронами (клетки Реншоу), роль которых заключается в воздействии на нейроны, конвергирующие на клетке, посылающей эти аксонные коллатерали (рис. 87). По такому принципу осуществляетсяторможение мотонейронов.

Возникновение импульса в мотонейроне млекопитающих не только активирует мышечные волокна, но через коллатерали аксона активирует тормозные клетки Реншоу. Последние устанавливают синаптические связи с мотонейронами. Поэтому усиление импульсации мотонейрона ведет к большей активации клеток Реншоу, вызывающей усиление торможения мотонейронов и уменьшение частоты их импульсации. Термин "антидромное” употребляется потому, что тормозной эффект легко вызывается антидромными импульсами, рефлекторно возникающими в мотонейронах.

Чем сильнее возбужден мотонейрон, чем больше сильные импульсы идут к скелетным мышцам по его аксону, тем интенсивнее возбуждается клетка Реншоу, которая подавляет активность мотонейрона. Следовательно, в нервной системе существует механизм, оберегающий нейроны от чрезмерного возбуждения. Характерная особенность постсинаптического торможения заключается в том, что оно подавляется стрихнином и столбнячным токсином (на процессы возбуждения эти фармакологические вещества не действуют).

В результате подавления постсинаптического торможения нарушается регуляция возбуждения в цнс, возбуждение разливается ("диффундирует”) по всей цнс, вызывая перевозбуждение мотонейронов и судорожные сокращения групп мышц (судороги).

Торможение ретикулярное (лат. reticularis - сетчатый) - нервный процесс развивающийся в спинальных нейронах под влиянием нисходящей импульсации из ретикулярной формации (гигантское ретикулярное ядро продолговатого мозга). Эффекты, создаваемые ретикулярными влияниями, по функциональному действию сходны с возвратным торможением, развивающимся на мотонейронах. Влияние ретикулярной формации вызывают стойкие ТПСП, охватывающие все мотонейроны независимо от их функциональной принадлежности. В этом случае, так же как и при возвратном торможении мотонейронов происходит ограничение их активности. Между таким нисходящим контролем со стороны ретикулярной формации и системочй возвратного торможения через клетки Реншоу существует определенное взаимодействие, и клетки Реншоу находятся под постоянным тормозящем контролем со стороны двух структур. Тормозящее влияние со стороны ретикулярной формации являются дополнительным фактором в регуляции уровня активности мотонейронов.

Первичное торможение может вызываться механизмами иной природы, не связанными с изменениями свойств постсинаптической мембраны. Торможение в этом случае возникает на пресинаптической мембране (синаптическое и пресинаптическое торможение).

Синаптическое торможение (греч. sunapsis соприкосновение, соединение) - нервный процесс, основанный на взаимодействии медиатора, секретируемого и выделяемого пресинаптическими нервными окончаниями, со специфическими молекулами постсинаптической мембраны. Возбуждающий или тормозной характер действия медиатора зависит от природы каналов, которые открываются в постсинаптической мембране. Прямое доказательство наличия в цнс специфических тормозящих синапсов было впервые получено Д. Ллойдом (1941).

Данные относительно электрофизиологических проявлений синаптического торможения: наличие синаптической задержки, отсутствие электрического поля в области синаптических окончаний дали основание считать его следствием химического действия особого тормозящего медиатора, выделяемого синаптическими окончаниями. Д. Ллойд показал, что если клетка находится в состоянии деполяризации, то тормозной медиатор вызывает гиперполяризацию, в то время как на фоне гиперполяризации постсинаптической мембраны он вызывает ее деполяризацию.

Пресинаптическое торможение (лат. praе -впереди чего-либо + греч. sunapsis соприкосновение, соединение) - частный случай синаптических тормозных процессов, проявляющихся в подавлении активности нейрона в результате уменьшения эффективности действия возбуждающих синапсов еще на пресинаптическом звене путем угнетения процесса высвобождения медиатора возбуждающими нервными окончаниями. В этом случае свойства постсинаптической мембраны не подвергаются каким-либо изменениям. Пресинаптическое торможение осуществляется посредством специальных тормозных интернейронов. Его структурной основой являются аксо-аксональные синапсы, образованные терминалиями аксонов тормозных интернейронов и аксональными окончаниями возбуждающих нейронов.

При этом окончание аксона тормозного нейрона является пресимпатическим по отношению к терминали возбуждающего нейрона, которая оказывается постсинаптической по отношению к тормозному окончанию и пресинаптической по отношению к активируемой им нервной клетки. В окончаниях пресинаптического тормозного аксона освобождается медиатор, который вызывает деполяризацию возбуждающих окончаний за счет увеличения проницаемости их мембраны для CI. Деполяризация вызывает уменьшение амплитуды потенциала действия, приходящего в возбуждающее окончание аксона. В результате происходит угнетение процесса высвобождения медиатора возбуждающими нервными окончаниями и снижение амплитуды возбуждающего постсинаптического потенциала.

Характерной особенностью пресинаптической деполяризации является замедленное развитие и большая длительность (несколько сотен миллисекунд), даже после одиночного афферентного импульса.

Пресинаптическое торможение существенно отличается от постсинаптического и в фармакологическом отношении. Стрихнин и столбнячный токсин не влияют на его течение. Однако наркотизирующие вещества (хлоралоза, нембутал) значительно усиливают и удлиняют пресинаптическое торможение. Этот вид торможения обнаружен в различных отделах цнс. Наиболее часто оно выявляется в структурах мозгового ствола и спинного мозга. В первых исследованиях механизмов пресинаптического торможения считалось, что тормозное действие осуществляется в точке, отдаленной от сомы нейрона, поэтому его называли "отдаленным” торможением.

Функциональное значение пресинаптического торможения, охватывающего пресинаптические терминали, по которым поступают афферентные импульсы, заключается в ограничении поступления к нервным центрам афферентной импульсации. Пресинаптическое торможение в первую очередь блокирует слабые асинхронные афферентные сигналы и пропускает более сильные, следовательно, оно служит механизмом выделения, вычленения более интенсивных афферентных импульсов из общего потока. Это имеет огромное приспособительное значение для организма, так как из всех афферентных сигналов, идущих к нервным центрам, выделяются самые главные, самые необходимые для данного конкретного времени. Благодаря этому нервные центры, нервная система в целом освобождается от переработки менее существенной информации.

Вторичное торможение - торможение осуществляющееся теми же нервными структурами, в которых происходит возбуждение. Этот нервный процесс подробно изложен в работах Н.Е. Введенского (1886, 1901г.г.).

Торможение реципрокное (лат. reciprocus - взаимный) - нервный процесс, основанный на том, что одни и те же афферентные пути, через которые осуществляется возбуждение одной группы нервных клеток, обеспечивают через посредство вставочных нейронов торможение других групп клеток. Реципрокные отношения возбуждения и торможения в цнс были открыты и продемонстрированы Н.Е. Введенским: раздражение кожи на задней лапке у лягушки вызывает ее сгибание и торможение сгибания или разгибания на противоположной стороне. Взаимодействие возбуждения и торможения является общим свойством всей нервной системы и обнаруживается как в головном, так и в спинном мозге. Экспериментально доказано, что нормальное выполнение каждого естественного двигательного акта основано на взаимодействии возбуждения и торможения на одних и тех же нейронах цнс.

Общее центральное торможение - нервный процесс, развивающийся при любой рефлекторной деятельности и захватывавающий почти всю цнс, включая центры головного мозга. Общее центральное торможение обычно проявляется раньше возникновения какой-либо двигательной реакции. Оно может проявляться при такой малой силе раздражения при которой двигательный эффект отсутствует. Такого вида торможение было впервые описано И.С. Беритовым (1937). Оно обеспечивает концентрацию возбуждения других рефлекторных или поведенческих актов, которые могли бы возникнуть под влиянием раздражений. Важная роль в создании общего центрального торможения принадлежит желатинозной субстанции спинного мозга.

При электрическом раздражении желатинозной субстанции у спинального препарата кошки происходит общее торможение рефлекторных реакций, вызываемых раздражением сенсорных нервов. Общее торможение является важным фактором в создании целостной поведенческой деятельности животных, а также в обеспечении избирательного возбуждения определенных рабочих органов.

Парабиотическое торможение развивается при патологических состояниях, когда лабильность структур центральной нервной системы снижается или происходит очень массивное одновременное возбуждение большого числа афферентных путей, как, например, при травматическом шоке.

Некоторые исследователи выделяют еще один вид торможения - торможение вслед за возбуждением . Оно развивается в нейронах после окончания возбуждения в результате сильной следовой гиперполяризации мембраны (постсинаптической).

Торможение -- это физиологический процесс в центральной нервной системе результатом которого является задержка возбуждения. Торможение не может распространяться подобно возбуждению, являясь местным процессом. Торможение возникает в момент встречи двух возбуждений, одно из которых является тормозящим, а другое тормозимым.

Процесс торможения впервые был показан в 1862 г. русским физиологом И. М. Сеченовым. У лягушки производился разрез головного мозга на уровне зрительных бугров с удалением больших полушарий мозга. Измерялось время рефлекса отдергивания задней лапы при погружении ее в раствор серной кислоты (метод Тюрка). При наложении на разрез зрительных бугров кристаллика поваренной соли время рефлекса увеличивалось. Кристаллик соли, раздражая зрительные бугры, вызывает возбуждение, которое спускается к спинномозговым центрам и тормозит их деятельность.

Выделяют первичное и вторичное торможение. Первичное торможение наблюдается при активации специальных тормозных структур, действующих на тормозную клетку и вызывающих в ней торможение как первичный процесс, без предварительного возбуждения. К первичному торможению относятся пресинаптическое, постсинаптическое и, разновидность последнего, возвратное и латеральное торможение.

Постсинаптическое торможение (лат. post позади, после чего-либо + греч. sinapsis соприкосновение, соединение) - нервный процесс, обусловленный действием на постсинаптическую мембрану специфических тормозных медиаторов (глицин, гаммааминомаслянная кислота), выделяемых специализированными пресинаптическими нервными окончаниями. Медиатор, выделяемый ими, изменяет свойства постсинаптической мембраны, что вызывает подавление способности клетки генерировать возбуждение. При этом происходит кратковременное повышение проницаемости постсинаптической мембраны к ионам К+ или CI, вызывающее снижение ее входного электрического сопротивления и генерацию тормозного постсинаптического потенциала (ТПСП). Возникновение ТПСП в ответ на афферентное раздражение обязательно связано с включением в тормозной процесс дополнительного звена - тормозного интернейрона, аксональные окончания которого выделяют тормозной медиатор. Специфика тормозных постсинаптических эффектов впервые была изучена на мотонейронах млекопитающих (Д. Экклс, 1951). В дальнейшем первичные ТПСП были зарегистрированы в промежуточных нейронах спинного и продолговатого мозга, в нейронах ретикулярной формации, коры больших полушарий, мозжечка и таламических ядер теплокровных животных.

Известно, что при возбуждении центра сгибателей одной из конечностей центр ее разгибателей тормозится и наоборот. Д. Экклс выяснил механизм этого явления в следующем опыте. Он раздражал афферентный нерв, вызывающий возбуждение мотонейрона, иннервирующего мышцу - разгибатель.

Нервные импульсы, дойдя до афферентного нейрона в спинномозговом ганглии, направляются по его аксону в спинном мозге по двум путям: к мотонейрону, иннервирующему мышцу - разгибатель, возбуждая ее и по коллатералям к промежуточному тормозному нейрону, аксон которого контактирует с мотонейроном иннервирующим мышцу - сгибатель, вызывая таким образом торможение антагонистической мышцы. Этот вид торможения был обнаружении в промежуточных нейронах всех уровней центральной нервной системы при взаимодействии антагонистических центров. Он был назван поступательным постсинаптическим торможением. Этот вид торможения координирует, распределяет процессы возбуждения и торможения между нервными центрами.

Возвратное (антидромное) постсинаптическое торможение (греч. antidromeo бежать в противоположном направлении) - процесс регуляции нервными клетками интенсивности поступающих к ним сигналов по принципу отрицательной обратной связи. Он заключается в том, что коллатерали аксонов нервной клетки устанавливают синаптические контакты со специальными вставочными нейронами (клетки Реншоу), роль которых заключается в воздействии на нейроны, конвергирующие на клетке, посылающей эти аксонные коллатерали. По такому принципу осуществляется торможение мотонейронов.

Параллельное торможение - возбуждение блокирует само себя за счет дивергенции по коллатерали с включением тормозной клетки на своем пути и возвратом импульсов к нейрону, который активировался этим же нейроном.

Латеральное постсинаптическое торможение. Тормозные вставочные нейроны соединены таким образом, что они активируются импульсами от возбужденного центра и влияют на соседние клетки с такими же функциями. В результате в этих соседних клетках развивается очень глубокое торможение. Такого типа торможение называется латеральным потому, что образующаяся зона торможения находится «сбоку» по отношению к возбужденному нейрону и инициируется им. Латеральное торможение играет особенно важную роль в афферентных системах. Латеральное торможение может образовать тормозную зону, которая окружает возбуждающие нейроны.

Торможение реципрокное (лат. reciprocus - взаимный) - нервный процесс, основанный на том, что одни и те же афферентные пути, через которые осуществляется возбуждение одной группы нервных клеток, обеспечивают через посредство вставочных нейронов торможение других групп клеток. Реципрокные отношения возбуждения и торможения в цнс были открыты и продемонстрированы Н.Е. Введенским: раздражение кожи на задней лапке у лягушки вызывает ее сгибание и торможение сгибания или разгибания на противоположной стороне. Взаимодействие возбуждения и торможения является общим свойством всей нервной системы и обнаруживается как в головном, так и в спинном мозге. Экспериментально доказано, что нормальное выполнение каждого естественного двигательного акта основано на взаимодействии возбуждения и торможения на одних и тех же нейронах цнс.

Пресинаптическое торможение (лат. praе -впереди чего-либо + греч. sunapsis соприкосновение, соединение) - частный случай синаптических тормозных процессов, проявляющихся в подавлении активности нейрона в результате уменьшения эффективности действия возбуждающих синапсов еще на пресинаптическом звене путем угнетения процесса высвобождения медиатора возбуждающими нервными окончаниями. В этом случае свойства постсинаптической мембраны не подвергаются каким-либо изменениям. Пресинаптическое торможение осуществляется посредством специальных тормозных интернейронов. Его структурной основой являются аксо-аксональные синапсы, образованные терминалиями аксонов тормозных интернейронов и аксональными окончаниями возбуждающих нейронов.

Характерной особенностью пресинаптической деполяризации является замедленное развитие и большая длительность (несколько сотен миллисекунд), даже после одиночного афферентного импульса.

Функциональное значение пресинаптического торможения, охватывающего пресинаптические терминали, по которым поступают афферентные импульсы, заключается в ограничении поступления к нервным центрам афферентной импульсации. Пресинаптическое торможение в первую очередь блокирует слабые асинхронные афферентные сигналы и пропускает более сильные, следовательно, оно служит механизмом выделения, вычленения более интенсивных афферентных импульсов из общего потока. Это имеет огромное приспособительное значение для организма, так как из всех афферентных сигналов, идущих к нервным центрам, выделяются самые главные, самые необходимые для данного конкретного времени. Благодаря этому нервные центры, нервная система в целом освобождается от переработки менее существенной информации.

Вторичное торможение - торможение осуществляющееся теми же нервными структурами, в которых происходит возбуждение. Этот нервный процесс подробно изложен в работах Н.Е. Введенского (1886, 1901г.г.).

Общее центральное торможение - нервный процесс, развивающийся при любой рефлекторной деятельности и захватывавающий почти всю цнс, включая центры головного мозга. Общее центральное торможение обычно проявляется раньше возникновения какой-либо двигательной реакции. Оно может проявляться при такой малой силе раздражения при которой двигательный эффект отсутствует. Такого вида торможение было впервые описано И.С. Беритовым (1937). Оно обеспечивает концентрацию возбуждения других рефлекторных или поведенческих актов, которые могли бы возникнуть под влиянием раздражений. Важная роль в создании общего центрального торможения принадлежит желатинозной субстанции спинного мозга.

Некоторые исследователи выделяют еще один вид торможения - торможение вслед за возбуждением. Оно развивается в нейронах после окончания возбуждения в результате сильной следовой гиперполяризации мембраны (постсинаптической).

Оба известных вида торможения со всеми их разновидностями выполняют охранительную роль. Отсутствие торможения привело бы к истощению медиаторов в аксонах нейронов и прекращению деятельности ЦНС.

Еще торможение играет важную роль в обработке поступающей в ЦНС информации. Особенно ярко выражена эта роль у пресинаптического торможения.

Торможение является важным фактором обеспечения координационной деятельности ЦНС.

Торможение - активный процесс, возникающий при действии раздражителей на ткань, проявляется в подавлении другого возбуждения, функционального отправления ткани нет.

Торможение может развиваться только в форме локального ответа.

Выделяют два типа торможения:

1) первичное . Для его возникновения необходимо наличие специальных тормозных нейронов . Торможение возникает первично без предшествующего возбуждения под воздействием тормозного медиатора .

Различают два вида первичного торможения:

- пресинаптическое в аксо-аксональном синапсе;

- постсинаптическое в аксодендрическом синапсе.

2) вторичное . Не требует специальных тормозных структур, возникает в результате изменения функциональной активности обычных возбудимых структур, всегда связано с процессом возбуждения.

Виды вторичного торможения:

- запредельное , возникающее при большом потоке информации, поступающей в клетку. Поток информации лежит за пределами работоспособности нейрона;

- пессимальное , возникающее при высокой частоте раздражения; парабиотическое, возникающее при сильно и длительно действующем раздражении;

Торможение вслед за возбуждением, возникающее вследствие снижения функционального состояния нейронов после возбуждения;

Торможение по принципу отрицательной индукции;

Торможение условных рефлексов.

Процессы возбуждения и торможения тесно связаны между собой, протекают одновременно и являются различными проявлениями единого процесса. Очаги возбуждения и торможения подвижны, охватывают большие или меньшие области нейронных популяций и могут быть более или менее выраженными. Возбуждение непременно сменяется торможением, и наоборот, т. е. между торможением и возбуждением существуют индукционные отношения.

Торможение лежит в основе координации движений, обеспечивает защиту центральных нейронов от перевозбуждения. Торможение в ЦНС может возникать при одновременном поступлении в спинной мозг нервных импульсов различной силы с нескольких раздражителей. Более сильное раздражение тормозит рефлексы, которые должны были наступать в ответ на более слабые.

В 1862 г. И. М. Сеченов открыл явление центрального торможения . Он доказал в своем опыте, что раздражение кристалликом хлорида натрия зрительных бугров лягушки (большие полушария головного мозга удалены) вызывает торможение рефлексов спинного мозга. После устранения раздражителя рефлекторная деятельность спинного мозга восстанавливалась. Результат этого опыта позволил И. М. Сеченому сделать заключение, что в ЦНС наряду с процессом возбуждения развивается процесс торможения, который способен угнетать рефлекторные акты организма. Н. Е. Введенский высказал предположение, что в основе явления торможения лежит принцип отрицательной индукции: более возбудимый участок в ЦНС тормозит активность менее возбудимых участков.


Современная трактовка опыта И. М. Сеченова (И. М. Сеченов раздражал ретикулярную формацию ствола мозга): возбуждение ретикулярной формации повышает активность тормозных нейронов спинного мозга - клеток Реншоу, что приводит к торможению α-мотонейронов спинного мозга и угнетает рефлекторную деятельность спинного мозга.

Тормозные синапсы образованы специальными тормозными нейронами (точнее, их аксонами). Медиатором могут быть глицин, ГАМК и ряд других веществ. Обычно глицин вырабатывается в синапсах, с помощью которых осуществляется постсинаптическое торможение. При взаимодействии глицина как медиатора с глициновыми рецепторами нейрона возникает гиперполяризация нейрона (ТПСП ) и, как следствие, - снижение возбудимости нейрона вплоть до полной его рефрактерности. В результате этого возбуждающие воздействия, оказываемые через другие аксоны, становятся малоэффективными или неэффективными. Нейрон выключается из работы полностью.

Тормозные синапсы открывают в основном хлорные каналы, что позволяет ионам хлора легко проходить через мембрану. Чтобы понять, как тормозные синапсы тормозят постсинаптический нейрон, нужно вспомнить, что мы знаем о потенциале Нернста для ионов Сl-. Мы рассчитали, что он равен примерно -70 мВ. Этот потенциал отрицательнее, чем мембранный потенциал покоя нейрона, равный -65 мВ. Следовательно, открытие хлорных каналов будет способствовать движению отрицательно заряженных ионов Сl- из внеклеточной жидкости внутрь. Это сдвигает мембранный потенциал в направлении более отрицательных значений по сравнению с покоем приблизительно до уровня -70 мВ.

Открытие калиевых каналов позволяет положительно заряженным ионам К+ двигаться наружу, что приводит к большей отрицательности внутри клетки, чем в покое. Таким образом, оба события (вход ионов Сl- в клетку и выход ионов К+ из нее) увеличивают степень внутриклеточной отрицательности. Этот процесс называют гиперполяризацией . Увеличение отрицательности мембранного потенциала по сравнению с его внутриклеточным уровнем в покое тормозит нейрон, поэтому выход значений отрицательности за пределы исходного мембранного потенциала покоя называют ТПСП .

Функциональные особенности соматической и вегетативной нервной системы. Сравнительная характеристика симпатического, парасимпатического и метасимпатического отделов вегетативной нервной системы.

Первое и основное отличие строения ВНС от строения соматической состоит в расположении эфферентного (моторного) нейрона. В СНС вставочный и моторный нейроны располагаются в сером веществе СМ, в ВНС эффекторный нейрон вынесен на периферию, за пределы СМ, и лежит в одном из ганглиев — пара-, превертебральном или интраорганном. Более того, в метасимпатической части ВНС весь рефлекторный аппарат полностью находится в интрамуральных ганглиях и нервных сплетениях внутренних органов.

Второе отличие касается выхода нервных волокон из ЦНС. Соматические НВ покидают СМ сегментарно и перекрывают иннервацией не менее трех смежных сегментов. Волокна же ВНС выходят из трех участков ЦНС (ГМ, грудопоясничного и крестцового отделов СМ). Они иннервируют все органы и ткани без исключения. Большинство висцеральных систем имеет тройную (симпатическую, пара- и метасимпатическую) иннервацию.

Третье отличие касается иннервации органов соматической и ВНС. Перерезка у животных вентральных корешков СМ сопровождается полным перерождением всех соматических эфферентных волокон. Она не затрагивает дуги автономного рефлекса ввиду того, что ее эффекторный нейрон вынесен в пара- или превертебральный ганглий. В этих условиях эффекторный орган управляется импульсами данного нейрона. Именно это обстоятельство подчеркивает относительную автономию указанного отдела НС.

Четвертое отличие относится к свойствам нервных волокон. В ВНС они в большинстве своем безмякотные или тонкие мякотные, как, например, преганглионарные волокна, диаметр которых не превышает 5 мкм. Такие волокна принадлежат к типу В. Постганглионарные волокна еще тоньше, большая часть их лишена миелиновой оболочки, они относятся к типу С. В отличие от них соматические эфферентные волокна толстые, мякотные, диаметр их составляет 12-14 мкм. Кроме того, пре- и постганглионарные волокна отличаются низкой возбудимостью. Для вызова в них ответной реакции необходима значительно большая, чем для моторных соматических волокон, сила раздражения.

Волокна ВНС характеризуются большим рефрактерным периодом и большой хронаксией. Скорость распространения по ним НИ невелика и составляет в преганглионарных волокнах до 18 м/с, в постганглионарных — до 3 м/с. Потенциалы действия волокон ВНС характеризуются большей, чем в соматических эфферентах, длительностью. Их возникновение в преганглионарных волокнах сопровождается продолжительным следовым положительным потенциалом, в постганглионарных волокнах — следовым отрицательным потенциалом с последующей продолжительной следовой гиперполяризацией (300-400 мс).

ВНС обеспечивает экстраорганную и внутриорганную регуляцию функций организма и включает в себя три компонента:

1) симпатический;

2) парасимпатический;

3) метсимпатический.

Вегетативная нервная система обладает рядом анатомических и физиологических особенностей, которые определяют механизмы ее работы.

Анатомические свойства:

1. Трехкомпонентное очаговое расположение нервных центров. Низший уровень симпатического отдела представлен боковыми рогами с VII шейного по III-IV поясничные позвонки, а парасимпатического - крестцовыми сегментами и стволом мозга. Высшие подкорковые центры находятся на границе ядер гипоталамуса (симпатический отдел - задняя группа, а парасимпатический - передняя). Корковый уровень лежит в области шестого-восьмого полей Бродмана (мотосенсорная зона), в которых достигается точечная локализация поступающих нервных импульсов. За счет наличия такой структуры вегетативной нервной системы работа внутренних органов не доходит до порога нашего сознания.

2. Наличие вегетативных ганглиев . В симпатическом отделе они расположены либо по обеим сторонам вдоль позвоночника, либо входят в состав сплетений. Таким образом, дуга имеет короткий преганглионарный и длинный постганглионарный путь. Нейроны пара-симпатического отдела находятся вблизи рабочего органа или в его стенке, поэтому дуга имеет длинный преганглионарный и короткий постганглионарный путь.

3. Эффеторные волокна относятся к группе В и С.

Физиологические свойства:

1. Особенности функционирования вегетативных ганглиев. Наличие феномена мультипликации (одновременного протекания двух противоположных процессов - дивергенции и конвергенции). Дивергенция - расхождение нервных импульсов от тела одного нейрона на несколько постганглионарных волокон другого. Конвергенция - схождение на теле каждого постганглионарного нейрона импульсов от нескольких преганглионарных.

Это обеспечивает надежность передачи информации из ЦНС на рабочий орган. Увеличение продолжительности постсинаптического потенциала, наличие следовой гиперполяризации и синоптической задержки способствуют передаче возбуждения со скоростью 1,5-3,0 м/с. Однако импульсы частично гасятся или полностью блокируются в вегетативных ганглиях. Таким образом они регулируют поток информации из ЦНС. За счет этого свойства их называют вынесенными на периферию нервными центрами, а вегетативную нервную систему - автономной.

2. Особенности нервных волокон. Преганглионарные нервные волокна относятся к группе В и проводят возбуждение со скоростью 3—18 м/с, постганглионарные - к группе С. Они проводят возбуждение со скоростью 0,5-3,0 м/с. Так как эфферентный путь симпатического отдела представлен преганглионарными волокнами, а парасимпатического - постганглионарными, то скорость передачи импульсов выше у парасимпатической нервной системы.

Таким образом, вегетативная нервная система функционирует неодинаково, ее работа зависит от особенностей ганглиев и строения волокон.

Симпатическая нервная система осуществляет иннервацию всех органов и тканей (стимулирует работу сердца, увеличивает просвет дыхательных путей, тормозит секреторную, моторную и всасывательную активность желудочно-кишечного тракта и т. д.). Она выполняет гомеостатическую и адаптационно-трофическую функции.

Ее гомеостатическая роль заключается в поддержании постоянства внутренней среды организма в активном состоянии, т. е.симпатическая нервная система включается в работу только при физических нагрузках, эмоциональных реакциях, стрессах, болевых воздействий, кровопотерях.

Адаптационно-трофическая функция направлена на регуляцию интенсивности обменных процессов. Это обеспечивает приспособление организма к меняющимся условиям среды существования.

Таким образом, симпатический отдел начинает действовать в активном состоянии и обеспечивает работу органов и тканей.

Парасимпатическая нервная система является антагонистом симпатической и выполняет гомеостатическую и защитную функции, регулирует опорожнение полых органов.

Гомеостатическая роль носит восстановительный характер и действует в состоянии покоя. Это проявляется в виде уменьшения частоты и силы сердечных сокращений, стимуляции деятельности желудочно-кишечного тракта при уменьшении уровня глюкозы в крови и т. д.

Все защитные рефлексы избавляют организм от чужеродных частиц. Например, кашель очищает горло, чиханье освобождает носовые ходы, рвота приводит к удалению пищи и т. д.

Опорожнение полых органов происходит при повышении тонуса гладких мышц, входящих в состав стенки. Это приводит к поступлению нервных импульсов в ЦНС, где они обрабатывают и по эффекторному пути направляются до сфинктеров, вызывая их расслабление.

Метсимпатическая нервная система представляет собой совокупность микроганглиев, расположенных в ткани органов. Они состоят из трех видов нервных клеток - афферентных, эфферентных и вставочных, поэтому выполняют следующие функции:

Обеспечивает внутриорганную иннервацию;

Являются промежуточным звеном между тканью и экстраорганной нервной системой. При действии слабого раздражителя активируется метсимпатический отдел, и все решается на местном уровне. При поступлении сильных импульсов они передаются через парасимпатический и симпатический отделы к центральным ганглиям, где происходит их обработка.

Метсимпатическая нервная система регулирует работу гладких мышц, входящих в состав большинства органов желудочно-кишечного тракта, миокарда, секреторную активность, местные иммунологические реакции и др.

Роль СМ в процессах регуляции деятельности ОДА и вегетативных функций организма. Характеристика спинальных животных. Принципы работы спинного мозга. Клинически важные спинальные рефлексы.

СМ - наиболее древнее образование ЦНС. Характерная особенность строения - сегментарность .

Нейроны СМ образуют его серое вещество в виде передних и задних рогов. Они выполняют рефлекторную функцию СМ.

Задние рога содержат нейроны (интернейроны ), которые передают импульсы в вышележащие центры, в симметричные структуры противоположной стороны, к передним рогам спинного мозга. Задние рога содержат афферентные нейроны, которые реагируют на болевые, температурные, тактильные, вибрационные, проприоцептивные раздражения.

Передние рога содержат нейроны (мотонейроны ), дающие аксоны к мышцам, они являются эфферентными. Все нисходящие пути ЦНС двигательных реакций заканчиваются в передних рогах.

В боковых рогах шейных и двух поясничных сегментов располагаются нейроны симпатического отдела вегетативной нервной системы, во втором-четвертом сегментах - парасимпатического.

В составе СМ имеется множество вставочных нейронов, которые обеспечивают связь с сегментами и с вышележащими отделами ЦНС, на их долю приходится 97 % от общего числа нейронов спинного мозга. В их состав входят ассоциативные нейроны - нейроны собственного аппарата СМ, они устанавливают связи внутри и между сегментами.

Белое вещество СМ образовано миелиновыми волокнами (короткими и длинными) и выполняет проводниковую роль.

Короткие волокна связывают нейроны одного или разных сегментов спинного мозга.

Длинные волокна (проекционные) образуют проводящие пути спинного мозга. Они формируют восходящие пути, идущие к головному мозгу, и нисходящие пути, идущие от головного мозга.

Спинной мозг выполняет рефлекторную и проводниковую функции.

Рефлекторная функция позволяет реализовать все двигательные рефлексы тела, рефлексы внутренних органов, терморегуляции и т. д. Рефлекторные реакции зависят от места, силы раздражителя, площади рефлексогенной зоны, скорости проведения импульса по волокнам, от влияния головного мозга.

Рефлексы делятся на:

1) экстероцептивные (возникают при раздражении агентами внешней среды сенсорных раздражителей);

2) интероцептивные (возникают при раздражении прессо-, механо-, хемо-, терморецепторов): висцеро-висцеральные - рефлексы с одного внутреннего органа на другой, висцеро-мышечные - рефлексы с внутренних органов на скелетную мускулатуру;

3) проприоцептивные (собственные) рефлексы с самой мышцы и связанных с ней образований. Они имеют моносинаптическую рефлекторную дугу. Проприоцептивные рефлексы регулируют двигательную активность за счет сухожильных и позотонических рефлексов. Сухожильные рефлексы (коленный, ахиллов, с трехглавой мышцы плеча и т. д.) возникают при растяжении мышц и вызывают расслабление или сокращение мышцы, возникают при каждом мышечном движении;

4) позотонические рефлексы (возникают при возбуждении вестибулярных рецепторов при изменении скорости движения и положения головы по отношению к туловищу, что приводит к перераспределению тонуса мышц (повышению тонуса разгибателей и уменьшению сгибателей) и обеспечивает равновесие тела).

Исследование проприоцептивных рефлексов производится для определения возбудимости и степени поражения ЦНС.

Проводниковая функция обеспечивает связь нейронов СМ друг с другом или с вышележащими отделами ЦНС.

Спинальное животное - животное, у которого пересечен СМ, часто на уровне шеи, но функция большей части СМ сохраняется;

Сразу после перерезки СМ большинство его функций ниже места пересечения у спинального животного резко угнетаются. Через несколько часов (у крыс и кошек) или несколько дней, недель (у обезьян) большинство свойственных спинному мозгу функций восстанавливаются почти до нормы, обеспечивая возможность экспериментального исследования препарата.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.