1 нуклеиновые кислоты строение и функции. Строение и функции нуклеиновых кислот

Нуклеиновые кислоты играют важную роль в клетке, обеспечивая ее жизнедеятельность и размножение. Эти свойства дают возможность назвать их вторыми по важности биологическими молекулами после белков. Многие исследователи даже выносят ДНК и РНК на первое место, подразумевая их главное значение в развитии жизни. Тем не менее, им суждено занять второе место после белков, потому как основой жизни является как раз полипетидная молекула.

Нуклеиновые кислоты - это другой уровень жизни, гораздо более сложный и интересный из-за того, что каждый вид молекулы выполняет специфическую для нее работу. В этом следует разобраться подробнее.

Понятие о нуклеиновых кислотах

Все нуклеиновые и РНК) представляют собой биологические гетерогенные полимеры, которые различаются по числу цепей. ДНК представляет собой двухцепочечную полимерную молекулу, которая содержит в себе генетическую информацию эукариотических организмов. Кольцевые молекулы ДНК могут содержать наследственную информацию некоторых вирусов. Это HIV и аденовирусы. Также существует 2 особых вида ДНК: митохондриальная и пластидная (находится в хлоропластах).

РНК же имеет намного больше видов, что обусловлено различными функциями нуклеиновой кислоты. Существует ядерная РНК, которая содержит наследственную информацию бактерий и большинства вирусов, матричная (или информационная РНК), рибосомальная и транспортная. Все они участвуют либо в хранении либо в экспрессии генов. Однако в том, какие функции в клетке выполняют нуклеиновые кислоты, следует разобраться более детально.

Двуспиральная молекула ДНК

Такой тип ДНК - это совершенная система хранения наследственной информации. Двуспиральная молекула ДНК представляет собой одну молекулу, состоящую из гетерогенных мономеров. Их задачей является образование водородных связей между нуклеотидами другой цепочки. Сам состоит из азотистого основания, остатка ортофосфата и пятиуглеродного моносахарида дезоксирибозы. В зависимости от того, какой тип азотистого основания лежит в основе определенного мономера ДНК, он имеет свое название. Виды мономеров ДНК:

  • дезоксирибоза с остатком ортофосфата и адениловым азотистым основанием;
  • тимидиновое азотистое основание с дезоксирибозой и остатком ортофосфата;
  • цитозиновое азотистое основание, десоксирибоза и остаток ортофосфата;
  • ортофосфат с дезоксирибозой и гуаниновым азотистым остатком.

На письме для упрощения схемы адениловый остаток обозначается как «А», гуаниновый - «Г», тимидиновый - «Т», а цитозиновый - «Ц». Важно, что генетическая информация передается с двухцепочечной молекулы ДНК на информационную РНК. Отличий у нее немного: здесь в качестве углеводного остатка имеется не дезоксирибоза, а рибоза, а вместо тимидилового азотистого основания в РНК встречается урациловый.

Строение и функции ДНК

ДНК построена по принципу биологического полимера, в котором одна цепочка создается заранее по заданному шаблону в зависимости от генетической информации родительской клетки. Нуклеодиды ДНК здесь соединены ковалентными связями. Затем, по к нуклеотидам одноцепочечной молекулы присоединяются другие нуклеотиды. Если в одноцепочечной молекуле начало представлено нуклеотидом аденином, то во второй (комплементарной) цепи ему будет соответствовать тимин. Гуанину комплементарен цитозин. Таким образом строится двухцепочечная молекула ДНК. Она находится в ядре и хранит наследственную информацию, которая закодирована кодонами - триплетами нуклеотидов. Функции двухцепочечной ДНК:

  • сохранение полученной от родительской клетки наследственной информации;
  • экспрессия генов;
  • препятствие изменениям мутационного характера.

Значение белков и нуклеиновых кислот

Считается, что функции белков и нуклеиновых кислот общие, а именно: они участвуют в экспрессии генов. Сама нуклеиновая кислота - это их место хранения, а белок - это конечный результат считывания информации с гена. Сам ген представляет собой участок одной целостной молекулы ДНК, упакованной в хромосому, в котором посредством нуклеотидов записана информация о структуре определенного белка. Один ген кодирует последовательность аминокислот только одного белка. Именно белок будет реализовывать наследственную информацию.

Классификация видов РНК

Функции нуклеиновых кислот в клетке весьма разнообразны. И наиболее многочисленны они в случае с РНК. Однако данная полифункциональность все равно относительная, потому как один тип РНК отвечает за одну из функций. При этом существуют следующие типы РНК:

  • ядерная РНК вирусов и бактерий;
  • матричная (информационная) РНК;
  • рибосомальная РНК;
  • матричная РНК плазмид (хлоропластов);
  • рибосомальная РНК хлоропластов;
  • митохондриальная рибосомальная РНК;
  • митохондриальная матричная РНК;
  • транспортная РНК.

Функции РНК

В данной классификации содержится несколько типов РНК, которые разделены в зависимости от места нахождения. Однако в функциональном плане их следует разделить всего на 4 вида: на ядерную, информационную, рибосомальную и транспортную. Функцией рибосомальной РНК является синтез белка на основе нуклеотидной последовательности информационной РНК. При этом аминокислоты «подносятся» к рибосомальной РНК, «нанизанной» на информационную РНК, посредством транспортной рибонуклеиновой кислоты. Так протекает синтез у любого организма, у которого есть рибосомы. Структура и функции нуклеиновых кислот обеспечивают и сохранение генетического материала, и создание процессов синтеза белка.

Митохондриальные нуклеиновые кислоты

Если о том, какие функции в клетке выполняют нуклеиновые кислоты, расположенные в ядре или цитоплазме, практически все известно, то о митохондриальной и пластидной ДНК информации пока мало. Здесь же найдены специфические рибосомальные, а также матричные РНК. Нуклеиновые кислоты ДНК и РНК присутствуют здесь даже у самых аутотрофных организмов.

Возможно, нуклеиновая кислота попала в клетку путем симбиогенеза. Данный путь учеными рассматривается как наиболее вероятный из-за отсутствия альтернативных объяснений. Процесс рассматривается так: внутрь клетки в определенный период попала симбиотная авторофная бактерия. Как результат, эта живет внутри клетки и обеспечивает ее энергией, но постепенно деградирует.

На начальных этапах эволюционного развития, вероятно, симбионтная безъядерная бактерия двигала мутационными процессами в ядре клетки-хозяина. Это позволило генам, ответственным за сохранение информации о структуре митохондриальных белков, внедриться в нуклеиновую кислоту клетки-хозяина. Однако пока о том, какие функции в клетке выполняют нуклеиновые кислоты митохондриального происхождения, информации не так много.

Вероятно, в митохондриях синтезируется часть белков, структура которых пока не кодируется ядерной ДНК или РНК хозяина. Также вероятно, что собственный механизм белкового синтеза нужен клетке только потому, что многие белки, синтезированные в цитоплазме, не могут попасть сквозь двойную мембрану митохондрии. При этом данные органеллы вырабатывают энергию, а потому в случае наличия канала или специфического переносчика для белка ее хватит для движения молекул и против градиента концентрации.

Плазмидные ДНК и РНК

В пластидах (хлоропластах) также существует своя ДНК, которая, вероятно, отвечает за реализацию аналогичных функций, как и в случае с митохондриальными нуклеиновыми кислотами. Здесь также находится и своя рибосомальная, матричная и Причем пластиды, если судить по количеству мембран, а не по числу биохимических реакций, устроены сложнее. Случается, что многие пластиды имеют по 4 слоя мембран, что объясняется учеными по-разному.

Очевидно одно: функции нуклеиновых кислот в клетке изучены пока недостаточно полно. Неизвестно, какое значение имеет митохондриальная белок синтезирующая система и аналогичная ей хлоропластическая. Также не совсем ясно, зачем клеткам нужны митохондриальные нуклеиновые кислоты, если белки (очевидно, не все) уже закодированы в ядерной ДНК (или РНК, в зависимости от организма). Хотя некоторые факты вынуждают согласиться, что белок синтезирующая система митохондрий и хлоропластов отвечает за такие же функции, что и ДНК ядра и РНК цитоплазмы. Они сохраняют наследственную информацию, воспроизводят ее и передают дочерним клеткам.

Резюме

Важно разбираться в том, какие функции в клетке выполняют нуклеиновые кислоты ядерного, пластидного и митохондриального происхождения. Это открывает множество перспектив для науки, ведь симбионтный механизм, согласно которому появились многие автотрофные организмы, можно воспроизвести и сегодня. Это позволит получить новый тип клетки, возможно, даже человеческой. Хотя о перспективах внедрения многомембранных пластидных органелл в клетки говорить пока рано.

Гораздо важнее понимать, что в клетке нуклеиновые кислоты отвечают практически за все процессы. Это и и сохранение информации о структуре клетки. Причем гораздо важнее то, что нуклеиновые кислоты выполняют функцию передачи наследственного материала от родительских клеток к дочерним. Это гарантирует дальнейшее развитие эволюционных процессов.

Содержание статьи

НУКЛЕИНОВЫЕ КИСЛОТЫ – биологические полимерные молекулы, хранящие всю информацию об отдельном живом организме, определяющие его рост и развитие, а также наследственные признаки, передаваемые следующему поколению. Нуклеиновые кислоты есть ядрах клеток всех растительных и животных организмов, что определило их название (лат. nucleus – ядро).

Состав полимерной цепи нуклеиновых кислот.

Полимерная цепь нуклеиновых кислот собрана из фрагментов фосфорной кислоты Н 3 РО 3 и фрагментов гетероциклических молекул, представляющих собой производные фурана. Есть лишь два вида нуклеиновых кислот, каждая построена на основе одного из двух типов таких гетероциклов – рибозы или дезоксирибозы (рис. 1).

Рис. 1. СТРОЕНИЕ РИБОЗЫ И ДЕЗОКСИРИБОЗЫ .

Название рибоза (от лат. Rib – ребро, скрепка) имеет окончание – оза, что указывает на принадлежность к классу сахаров (например, глюкоза, фруктоза). У второго соединения нет группы ОН (окси-группа), которая в рибозе отмечена красным цветом. В связи с этим втрое соединение называют дезоксирибозой, т.е., рибоза, лишенная окси-группы.

Полимерная цепь, построенная из фрагментов рибозы и фосфорной кислоты, представляет собой основу одной из нуклеиновых кислот –рибонуклеиновой кислоты (РНК). Термин «кислота» в названии этого соединения употреблен потому, что одна из кислотных групп ОН фосфорной кислоты остается незамещенной, что придает всему соединению слабокислый характер. Если вместо рибозы в образовании полимерной цепи участвует дезоксирибоза, то образуется дезоксирибонуклеиновая кислота, для которой повсеместно принято широко известное сокращение ДНК.

Структура ДНК.

Молекула ДНК служит отправной точкой в процессе роста и развития организма. На рис. 2 показано, как объединяются в полимерную цепь два типа чередующихся исходных соединений, показан не способ синтеза, а принципиальная схема сборки молекулы ДНК.

В окончательном варианте полимерная молекула ДНК содержит в боковом обрамлении азотсодержащие гетероциклы. В образовании ДНК участвуют четыре типа таких соединений, два из них представляют собой шестичленные циклы, а два – конденсированные циклы, где шестичленное кольцо спаяно с пятичленным (рис. 3).

Рис. 3. СТРОЕНИЕ АЗОТСОДЕРЖАЩИХ ГЕТЕРОЦИКЛОВ , входящих в состав ДНК

На втором этапе сборки к свободным группам ОН дезоксирибозы присоединяются показанные выше азотсодержащие гетероциклические соединения, образуя у полимерной цепи боковые подвески (рис. 4).

Присоединенные к полимерной цепи молекулы аденина, тимина, гуанина и цитозина обозначают первыми буквами названий исходных соединений, то есть, А , Т , Г и Ц .

Сама полимерная цепь ДНК имеет определенную направленность – при мысленном продвижении вдоль молекулы в прямом и обратном направлении одни и те же группировки, входящие в состав цепи, встречаются на пути в разной последовательности. При движении в одном направлении от одного атома фосфора к другому вначале на пути следования идет группа СН 2 , а затем две группы СН (атомы кислорода можно не принимать во внимание), при движении в противоположном направлении последовательность этих групп будет обратной (рис. 5).

Рис. 5. НАПРАВЛЕННОСТЬ ПОЛИМЕРНОЙ ЦЕПИ ДНК . При описании того, в каком порядке чередуются присоединенные гетероциклы, принято использовать прямое направление, то есть от группы СН 2 к группам СН.

Само понятие «направление цепи» помогает понять то, как располагаются две цепи ДНК при их объединении, а также имеет прямое отношение к синтезу белка.

На следующей стадии две молекулы ДНК объединяются, располагаясь таким образом, чтобы начало и концы цепей были направлены в противоположные стороны. В этом случае гетероциклы двух цепей обращены навстречу друг другу и оказываются расположенными неким оптимальным образом, имеется в виду, что между парами группировок С=О и NH 2 , а также между є N и NH=, входящими в состав гетероциклов, возникают водородные связи (см . ВОДОРОДНАЯ СВЯЗЬ). На рис. 6 показано, как располагаются две цепи относительно друг друга и как при этом возникают водородные связи между гетероциклами. Самая важная деталь – состоит в том, что пары, связанные водородными связями, жестко определены: фрагмент А всегда взаимодействует с Т , а фрагмент Г – всегда с Ц . Строго определенная геометрия этих групп приводит к тому, что эти пары исключительно точно подходят друг другу (как ключ к замку), пара А-Т связана двумя водородными связями, а пара Г-Ц – тремя связями.

Водородные связи заметно слабее обычных валентных связей, но из-за большого их количества вдоль всей полимерной молекулы соединение двух цепей становится достаточно прочным. В молекуле ДНК содержится десятки тысяч групп А , Т , Г и Ц и порядок их чередования в пределах одной полимерной молекулы может быть различным, например, на определенном участке цепи последовательность может иметь вид: -А -А -Т -Г -Ц -Г -А -Т -. Поскольку взаимодействующие группы строго определены, то на противолежащем участке второй полимерной молекулы обязательно будет последовательность –Т -Т -А -Ц -Г -Ц -Т -А -. Таким образом, зная порядок расположения гетероциклов в одной цепи, можно указать их размещение в другой цепи. Из этого соответствия следует, что суммарно в сдвоенной молекуле ДНК количество групп А равно количеству групп Т , а количество групп Г – количеству Ц (правило Э.Чаргаффа).

Две молекулы ДНК, связанные водородными связями, показаны на рис. 5 в виде двух плоско лежащих цепей, однако в действительности они располагаются иным образом. Истинное направление в пространстве всех связей, определяемое валентными углами и стягивающими водородными взаимодействиями, приводит к определенном изгибам полимерных цепей и повороту плоскости гетероциклов, что приблизительно показано в первом видеофрагменте рис. 7 с помощью структурной формулы. Гораздо точнее всю пространственную конструкцию можно передать только с помощью объемных моделей (рис. 7, второй видеофрагмент). При этом возникает сложная картина, поэтому принято использовать упрощенные изображения, которые особенно широко применяют при изображении структуры нуклеиновых кислот или белков . В случае нуклеиновых кислот полимерные цепи изображают в форме плоских лент, а гетероциклические группировки А , Т , Г и Ц – в виде боковых стержней или простых валентных штрихов, имеющих различные цвета, либо содержащих на конце буквенные обозначения соответствующих гетероциклов (рис. 7, третий видеофрагмент).

Во время поворота всей конструкции вокруг вертикальной оси (рис. 8) отчетливо видна спиральная форма двух полимерных молекул, которые как бы навиты на поверхность цилиндра, это широко известная двойная спираль ДНК.

При таком упрощенном изображении не исчезает основная информация – порядок чередования группировки А , Т , Г и Ц , определяющий индивидуальность каждого живого организма, вся информация записана четырехбуквенным кодом.

Строение полимерной цепи и обязательное присутствие четырех типов гетероциклов однотипно для всех представителей живого мира. У всех животных и высших растений количество пар А Т всегда несколько больше, чем пар Г Ц . Отличие ДНК млекопитающих от ДНК растений в том, что у млекопитающих пара А Т на всем протяжении цепи встречается ненамного чаще (приблизительно в 1,2 раза), чем пара Г Ц . В случае растений предпочтительность первой пары гораздо более заметна (приблизительно в 1,6 раза).

ДНК – одна из самых больших известных на сегодня полимерных молекул, у некоторых организмов ее полимерная цепь состоит из сотен миллионов звеньев. Длина такой молекулы достигает нескольких сантиметров, это очень большая величина для молекулярных объектов. Т.к. поперечное сечение молекулы всего 2 нм (1нм = 10 –9 м), то ее пропорции можно сопоставить с железнодорожным рельсом длиной в десятки километров.

Химические свойства ДНК.

В воде ДНК образует вязкие растворы, при нагревании таких растворов до 60° С или при действии щелочей двойная спираль распадается на две составляющие цепи, которые вновь могут объединиться, если вернуться к исходным условиям. В слабокислых условиях происходит гидролиз, в результате частично расщепляются фрагменты –Р-О-СН 2 - с образованием фрагментов –Р-ОН и НО-СН 2 , соответственно результате образуются мономерные, димерные (сдвоенные) или тримерные (утроенные) кислоты, представляющие собой звенья, из которых была собрана цепь ДНК (рис. 9).

Рис. 9. ФРАГМЕНТЫ, ПОЛУЧАЕМЫЕ ПРИ РАСЩЕПЛЕНИИ ДНК .

Более глубокий гидролиз позволяет отделить участки дезоксирибозы от фосфорной кислоты, а также группировку Г от дезоксирибозы, т.е., более детально разобрать молекулу ДНК на составляющие компоненты. При действии сильных кислот (помимо распада фрагментов –Р(О)-О-СН 2 -) отщепляются и группировки А и Г . Действие иных реагентов (например, гидразина) позволяет отделить группировки Т и Ц . Более деликатное расщепление ДНК на компоненты проводят с помощью биологического препарата – дезоксирибонуклеазы, выделяемой из поджелудочной железы (окончание -аза всегда указывает на то, что данное вещество представляет собой катализатор биологического происхождения – фермент). Начальная часть названия – дезоксирибонуклеаза – указывает, какое именно соединение расщепляет этот фермент. Все указанные способы расщепления ДНК ориентированы, в первую очередь, на детальный анализ ее состава.

Самая важная информация, содержащаяся в молекуле ДНК, – порядок чередования групп А , Т , Г и Ц , ее получают с помощью специально разработанных методик. Для этого создан широкий набор ферментов, которые находят в молекуле ДНК строго определенную последовательность, например, Ц -T -Г -Ц -A -Г (а также соответствующую ей последовательность на противоположной цепи Г -А -Ц -Г -Т -Ц ) и вычленяют ее из состава цепи. Таким свойством обладает фермент Pst I (торговое наименование, оно образуется из названия того микроорганизма P rovidencia st uartii, из которого получают этот фермент). При использовании другого фермента Pal I удается найти последовательность Г -Г -Ц -Ц . Далее сопоставляются результаты, полученные при действии широкого набора различных ферментов по заранее разработанной схеме, в результате удается определить последовательность таких групп на определенном участке ДНК. Сейчас подобные методики доведены до стадии широкого применения, они используются в самых разнообразных областях, далеких от научных биохимических исследований, например, при идентификации останков живых организмов или установлении степени родства.

Структура РНК

во многом напоминает ДНК, отличие в том, что в основной цепи фрагменты фосфорной кислоты чередуются с рибозой, а не с дезоксирибозой (рис.). Второе отличие – к боковому обрамлению присоединяется гетероцикл урацил (У ) вместо тимина (Т ), остальные гетероциклы А , Г и Ц те же, что у ДНК. Урацил отличается от тимина отсутствием метильной группы, присоединенной к циклу, на рис. 10 эта метильная группа выделена красным цветом.

Рис. 10. ОТЛИЧИЕ ТИМИНА ОТ УРАЦИЛА – отсутствие у второго соединения метильной группы, выделенной в тимине красным цветом.

Фрагмент молекулы РНК показан на рис. 11, порядок следования группировок А , У , Г и Ц , а также их количественное соотношение может быть различным.

Рис.11. ФРАГМЕНТ МОЛЕКУЛЫ РНК . Основное отличие от ДНК – наличие группировок ОН в рибозе (красный цвет) и фрагмента урацила (синий цвет).

Полимерная цепь РНК приблизительно в десять раз короче, чем у ДНК. Дополнительное отличие в том, что молекулы РНК не объединяются в двойные спирали, состоящие из двух молекул, а обычно существуют в виде одиночной молекулы, которая на некоторых участках может образовывать сама с собой двухцепные спиральные фрагменты, чередующиеся с линейными участками. На спиральных участках взаимодействие пар соблюдается также строго, как в ДНК. Пары, связанные водородными связями и формирующие спираль (А -У и Г -Ц ), возникают на тех участках, где расположение групп оказывается благоприятным для такого взаимодействия (рис. 12).

Для подавляющего большинства живых организмов количественное содержание пар А -У больше чем Г -Ц , у млекопитающих в 1,5–1,6 раза, у растений – в 1,2 раза. Существует несколько типов РНК, роли, которых в живом организме различны.

Химические свойства РНК

напоминают свойства ДНК, однако наличие дополнительных групп ОН в рибозе и меньшее (в сравнении с ДНК) содержание стабилизированных спиральных участков делает молекулы РНК химически более уязвимыми. При действии кислот или щелочей основные фрагменты полимерной цепи Р(О)-О-СН 2 легко гидролизуются, группировки А , У , Г и Ц отщепляются легче. Если нужно получить мономерные фрагменты (подобные тем, что на рис. 9), сохранив при этом химически связанные гетероциклы, используют деликатно действующие ферменты, называемые рибонкулеазами.

Участие ДНК и РНК в синтезе белков

– одна из основных функций нуклеиновых кислот. Белки – важнейшие компоненты каждого живого организма. Мышцы, внутренние органы, костная ткань, кожный и волосяной покров млекопитающих состоят из белков . Это полимерные соединения, которые собираются в живом организме из различных аминокислот. В такой сборке управляющую роль играют нуклеиновые кислоты, процесс проходит в две стадии, причем на каждой из них определяющий фактор – взаимоориентация азотсодержащих гетероциклов ДНК и РНК.

Основная задача ДНК – хранить записанную информацию и предоставлять в тот момент, когда начинается синтез белков. В связи с этим понятна повышенная химическая устойчивость ДНК в сравнении с РНК. Природа позаботилась о том, чтобы сохранить по возможности основную информацию неприкосновенной.

На первой стадии часть двойной спирали раскрывается, освободившиеся ветви расходятся, и на группах А , Т , Г и Ц , оказавшихся доступными, начинается синтез РНК, называемой матричной РНК, поскольку она как копия с матрицы точно воспроизводит информацию, записанную на раскрывшемся участке ДНК. Напротив группы А , принадлежащей молекуле ДНК, располагается фрагмент будущей матричной РНК, содержащий группу У , все остальные группы располагаются друг напротив друга в точном соответствии с тем, как это происходит при образовании двойной спирали ДНК (рис. 13).

По указанной схеме образуются полимерная молекула матричной РНК, содержащая несколько тысяч мономерных звеньев.

На втором этапе матричная ДНК перемещается из ядра клетки в околоядерное пространство – цитоплазму. К полученной матричной РНК подходят так называемые транспортные РНК, которые несут с собой (транспортируют) различные аминокислоты. Каждая транспортная РНК, нагруженная определенной аминокислотой, приближается к строго обусловленному участку матричной РНК, нужное место обнаруживается с помощью все того же принципа взаимосоответствия групп А

Важная деталь состоит в том, что временное взаимодействие матричной и транспортной РНК проходит всего по трем группам, например, к триаде Ц -Ц -У матричной кислоты может подойти только соответствующая ей тройка Г -Г -А транспортной РНК, которая непременно несет с собой аминокислоту глицин (рис. 14). Точно также к триаде Г -А -У может приблизиться лишь набор Ц -У -А , транспортирующий только аминокислоту лейцин. Таким образом, последовательность групп в матричной РНК указывает, в каком порядке должны соединяться аминокислоты. Кроме того, система содержит в закодированном виде дополнительные регулирующие правила, некоторые последовательности из трех групп матричной РНК указывает на то, что в этом месте синтез белка должен остановиться, т.е. молекула достигла необходимой длины.

Показанный на рис. 14 синтез белка проходит с участием еще одного – третьего вида РНКислот, они входят в состав рибосом и потому их называют рибосомными. Рибосома, представляющая собой ансамбль определенных белков рибосомных РНК, обеспечивает взаимодействие матричной и транспортной РНК, играя роль конвейерной ленты, которая передвигает матричную РНК на один шаг после того, как произошло соединение двух аминокислот.

Основной смысл двухстадийной схемы, показанной на рис. 13 и 14, состоит в том, что полимерная цепь белковой молекулы собирается из различных аминокислот в намеченном порядке и строго по тому плану, который был записан в закодированном виде на определенном участке ДНК. Таким образом, ДНК представляет собой отправную точку всего этого запрограммированного процесса.

В процессе жизнедеятельности белки постоянно расходуются, и потому они регулярно воспроизводятся по описанной схеме, весь синтез белковой молекулы, состоящей из сотен аминокислот, проходит в живом организме приблизительно в течение одной минуты.

Первые исследования нуклеиновых кислот были проведены во второй половине 19 в., понимание того, что в ДНК зашифрована вся информация о живом организме, пришло в середине 20 в., структуру двойной спирали ДНК установили в 1953 Дж.Уотсон и Ф.Крик на основании данных рентгеноструктурного анализа, что признано крупнейшим научным достижением 20 столетия. В середине 70-х годов 20 в. появились методики расшифровки детальной структуры нуклеиновых кислот, а вслед за тем были разработаны способы их направленного синтеза. Сегодня ясны далеко не все процессы, происходящие в живых организмах с участием нуклеиновых кислот, и сегодня это одна из самых интенсивно развивающихся областей науки.

Михаил Левицкий

1. Нуклеиновые кислоты, их строение и функции

2. Основные этапы биосинтеза белков. Генетический код, его основные свойства

3. Регуляция экспрессии генов

1. Нуклеиновые кислоты, их строение и функции

Нуклеиновые кислоты – это линейные неразветвленные гетерополимеры, мономерами которых являются нуклеотиды, связанные фосфодиэфирными связями.

Нуклеотиды – это органические вещества, молекулы которых состоят из остатка пентозы (рибозы или дезоксирибозы), к которому ковалентно присоединены остаток фосфорной кислоты и азотистое основание. Азотистые основания в составе нуклеотидов делятся на две группы: пуриновые (аденин и гуанин) и пиримидиновые (цитозин, тимин и урацил).Дезоксирибонуклеотиды включают в свой состав дезоксирибозу и одно из азотистых оснований: аденин (А), гуанин (Г), тимин (Т), цитозин (Ц). Рибонуклеотиды включают в свой состав рибозу и одно из азотистых оснований: аденин (А), гуанин (Г), урацил (У), цитозин (Ц).

В ряде случаев в клетках встречаются и разнообразные производные от перечисленных азотистых оснований – минорные основания, входящие в состав минорных нуклеотидов.

Свободные нуклеотиды и сходные с ними вещества играют важную роль в обмене веществ. Например, НАД (никотинамидадениндинуклеотид) и НАДФ (никотинамидадениндинуклеотидфосфат) служат переносчиками электронов и протонов.

Свободные нуклеотиды способны присоединять еще 1...2 фосфорные группы, образуя макроэргические соединения. Универсальным источником энергии в клетке является АТФ – аденозинтрифосфорная кислота, состоящая из аденина, рибозы и трех остатков фосфорной (пирофосфорной) кислоты. При гидролизе одной концевой пирофосфатной связи выделяется около 30,6 кДж/моль (или 8,4 ккал/моль) свободной энергии, которая может использоваться клеткой. Такая пирофосфатная связь называется макроэргической (высокоэнергетической).

Кроме АТФ существуют и другие макроэргические соединения на основе нуклеотидов: ГТФ (содержит гуанин; участвует в биосинтезе белков, глюкозы), УТФ (содержит урацил; участвует в синтезе полисахаридов).

Нуклеотиды способны образовывать циклические формы, например, цАМФ, цЦМФ, цГМФ. Циклические нуклеотиды выполняют роль регуляторов различных физиологических процессов.

Нуклеиновые кислоты

Существует два типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Нуклеиновые кислоты обеспечивают хранение, воспроизведение и реализацию генетической (наследственной) информации. Эта информация отражена (закодирована) в виде нуклеотидных последовательностей. В частности, последовательность нуклеотидов отражает первичную структуру белков (см. ниже). Соответствие между аминокислотами и кодирующими их нуклеотидными последовательностями называется генетическим кодом. Единицей генетического кода ДНК и РНК является триплет – последовательность из трех нуклеотидов.

Нуклеиновые кислоты – это химически активные вещества. Они образуют разнообразные соединения с белками – нуклеопротеиды, или нуклеопротеины.

Дезоксирибонуклеиновая кислота (ДНК) – это нуклеиновая кислота, мономерами которой являются дезоксирибонуклеотиды. ДНК является первичным носителем наследственной информации. Это означает, что вся информация о структуре, функционировании и развитии отдельных клеток и целостного организма записана в виде нуклеотидных последовательностей ДНК.

Нуклеиновые кислоты были открыты Мишером в 1868 г. Однако лишь в 1924 г. Фёльген доказал, что ДНК является обязательным компонентом хромосом. В 1944 г. Эвери, Мак-Леод и Мак-Карти установили, что ДНК играет решающую роль в хранении, передаче и реализации наследственной информации.

Существует несколько типов ДНК: А, В, Z, Т–формы. Из них в клетках обычно встречается В–форма – двойная правозакрученная спираль, которая состоит из двух нитей (или цепей), связанных между собой водородными связями. Каждая нить представлена чередующимися остатками дезоксирибозы и фосфорной кислоты, причем, к дезоксирибозе ковалентно присоединяется азотистое основание. При этом азотистые основания двух нитей ДНК направлены друг к другу и за счет образования водородных связей образуют комплементарные пары: А=Т (две водородных связи) и Г≡Ц (три водородных связи). Поэтому нуклеотидные последовательности этих цепей однозначно соответствуют друг другу. Длина витка двойной спирали равна 3,4 нм, расстояние между смежными парами азотистых оснований 0,34 нм, диаметр двойной спирали 1,8 нм.

Длина ДНК измеряется числом нуклеотидных пар (сокращ. – пн). Длина одной молекулы ДНК колеблется от нескольких тысяч пн (сокращ. – тпн) до нескольких миллионов пн (мпн). Например, у наиболее простых вирусов длина ДНК составляет примерно 5 тпн, у наиболее сложных вирусов – свыше 100 тпн, у кишечной палочки ~ 3,8 мпн, у дрожжей ~ 13,5 мпн, у мушки дрозофилы ~ 105 мпн, у человека ~ 2900 мпн (размеры ДНК даны для минимального набора хромосом – гаплоидного). Длину ДНК можно выразить и в обычных метрических единицах длины: общая длина молекулы ДНК у кишечной палочки составляет ~ 1,3 мм, а длина молекулы ДНК в составе первой хромосомы человека ~ 16 см, а длина ДНК во всем геноме человека (в 23 хромосомах) ~ 1 метр. В эукариотических клетках ДНК существует в виде нуклеопротеиновых комплексов, в состав которых входят белки-гистоны.

Репликация (самоудвоение) ДНК – это один из важнейших биологических процессов, обеспечивающих воспроизведение генетической информации. В результате репликации одной молекулы ДНК образуется две новые молекулы, которые являются точной копией исходной молекулы – матрицы. Каждая новая молекула состоит из двух цепей – одной из родительских и одной из сестринских. Такой механизм репликации ДНК называется полуконсервативным.

Реакции, в которых одна молекула гетерополимера служит матрицей (формой) для синтеза другой молекулы гетерополимера с комплементарной структурой, называются реакциями матричного типа. Если в ходе реакции образуются молекулы того же вещества, которое служит матрицей, то реакция называется автокаталитической. Если же в ходе реакции на матрице одного вещества образуются молекулы другого вещества, то такая реакция называется гетерокаталитической. Таким образом, репликация ДНК (то есть синтез ДНК на матрице ДНК) является автокаталитической реакцией матричного синтеза.

К реакциям матричного типа относятся, в первую очередь, репликация ДНК (синтез ДНК на матрице ДНК), транскрипция ДНК (синтез РНК на матрице ДНК) и трансляция РНК (синтез белков на матрице РНК). Однако существуют и другие реакции матричного типа, например, синтез РНК на матрице РНК и синтез ДНК на матрице РНК. Два последних типа реакций наблюдаются при заражении клетки определенными вирусами. Синтез ДНК на матрице РНК (обратная транскрипция) широко используется в генной инженерии.

Все матричные процессы состоят из трех этапов: инициации (начала), элонгации (продолжения) и терминации (окончания).

Репликация ДНК – это сложный процесс, в котором принимает участие несколько десятков ферментов. К важнейшим из них относятся ДНК-полимеразы (несколько типов), праймазы, топоизомеразы, лигазы и другие. Главная проблема при репликации ДНК заключается в том, что в разных цепях одной молекулы остатки фосфорной кислоты направлены в разные стороны, но наращивание цепей может происходить только с того конца, который заканчивается группой ОН. Поэтому в реплицируемом участке, который называется вилкой репликации, процесс репликации протекает на разных цепях по-разному. На одной из цепей, которая называется ведущей, происходит непрерывный синтез ДНК на матрице ДНК. На другой цепи, которая называется запаздывающей, вначале происходит связывание праймера – специфического фрагмента РНК. Праймер служит затравкой для синтеза фрагмента ДНК, который называется фрагментом Оказаки. В дальнейшем праймер удаляется, а фрагменты Оказаки сшиваются между собой в единую нить фермента ДНК–лигазы. Репликация ДНК сопровождается репарацией – исправлением ошибок, неизбежно возникающих при репликации. Существует множество механизмов репарации.

Рибонуклеиновая кислота (РНК) – это нуклеиновая кислота, мономерами которой являются рибонуклеотиды.

В пределах одной молекулы РНК имеется несколько участков, которые комплементарны друг другу. Между такими комплементарными участками образуются водородные связи. В результате в одной молекуле РНК чередуются двуспиральные и односпиральные структуры, и общая конформация молекулы напоминает клеверный лист на черешке.

Азотистые основания, входящие в состав РНК, способны образовывать водородные связи с комплементарными основаниями и ДНК, и РНК. При этом азотистые основания образуют пары А=У, А=Т и Г≡Ц. Благодаря этому возможна передача информации от ДНК к РНК, от РНК к ДНК и от РНК к белкам.

В клетках обнаруживается три основных типа РНК, выполняющих различные функции:

1. Информационная, или матричная РНК (иРНК, или мРНК). Составляет 5% клеточной РНК. Служит для передачи генетической информации от ДНК на рибосомы при биосинтезе белка. В эукариотических клетках иРНК (мРНК) стабилизирована с помощью специфических белков. Это делает возможным продолжение биосинтеза белка даже в том случае, если ядро неактивно.

2. Рибосомная, или рибосомальная РНК (рРНК). Составляет 85% клеточной РНК. Входит в состав рибосом, определяет форму большой и малой рибосомных субъединиц, обеспечивает контакт рибосомы с другими типами РНК.

3. Транспортная РНК (тРНК). Составляет 10% клеточной РНК. Транспортирует аминокислоты к соответствующему участку иРНК в рибосомах. Каждый тип тРНК транспортирует определенную аминокислоту.

В клетках имеются и другие типы РНК, выполняющие вспомогательные функции.

Все типы РНК образуется в результате реакций матричного синтеза. В большинстве случаев матрицей служит одна из цепей ДНК. Таким образом, синтез РНК на матрице ДНК является гетерокаталитической реакцией матричного типа. Этот процесс называется транскрипцией и контролируется определенными ферментами – РНК–полимеразами (транскриптазами).

Нуклеиновые кислоты – природные высокомолекулярные биополимеры, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах.

Макромолекула нуклеиновых кислот, с молекулярной массой от 10000 Дальтон до нескольких миллионов, открыты в 1869 г. швейцарским химиком Ф. Мишером в ядрах лейкоцитов, входящих в состав гноя, отсюда и название (нуклеус – ядро).

Нуклеиновые кислоты представляют собой полимеры, мономерами которых являются нуклеотиды . Каждый нуклеотид состоит из азотистого основания, сахара пентозы и остатка фосфорной кислоты. Из нуклеотидов строятся длинные молекулы – полинуклеотиды .

Фосфат

Азотистое

основание

Связь между

фосфатом и сахаром

Рис. Строение нуклеотида.

Сахар , входящий в состав нуклеотида, содержит пять углеродных атомов, т. е. представляет собой пентозу . В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два типа нуклеиновых кислот – рибонуклеиновые (РНК), которые содержат рибозу , и дезоксирибонуклеиновые кислоты (ДНК), содержащие дезоксирибозу (С 5 Н 10 О 4).

Основания , в обоих видах нуклеиновых кислот, содержатся четырех разных видов: два из них относятся к классу пуринов и два – к классу пиримидинов . К числу пуринов относятся аденин (А) и гуанин (Г), а к числу пиримидинов – цитизин (Ц) и тимин (Т) или урацил (У) (соответственно в ДНК или РНК).

Нуклеиновые кислоты являются кислотами потому, что в их молекуле содержится фосфорная кислота.

Роль нуклеотидов в организме не ограничивается тем, что они служат строительными блоками нуклеиновых кислот; некоторые важные коферменты также представляют совой нукоеотиды. Таковы, например, аденозинтрифосфат (АТФ), никотинамидадениндинуклеотид (НАД), никотинамидадениндинуклеотид-фосфат (НАДФ) и флавинадениндинуклеотид (ФАД).

Нуклеиновые кислоты

ДНКРНК


ядерная цитоплазматические иРНК тРНК рРНК

В настоящее время известно большое число разновидностей ДНК и РНК, отличных друг от друга по строению и значению в метаболизме.

Пример: в бактериях клеток кишечной палочки содержится около 1000 различных нуклеиновых кислот, а у животных и растений еще больше.

Каждый вид организмов содержит свой, характерный только для него, набор этих кислот. ДНК локализуется преимущественно в хромосомах клеточного ядра (99% всей ДНК клетки), а также в митохондриях и хлоропластах. РНК входит в состав ядрышек, рибосом митохондрий, пластид и цитоплазмы.

Молекула ДНК является универсальным носителем генетической информации в клетках. Именно благодаря строению и функциям этой молекулы признаки передаются по наследству – от родителей потомкам, т.е. осуществляется всеобщее свойство живого – наследственность. Молекулы ДНК – самые крупные биополимеры.

Строение ДНК.

Структура молекул ДНК была расшифрована в 1953 г. Дж. Уотсоном и Ф. Криком. За это открытие они получили Нобелевскую премию.

Согласно модели ДНК по Уотсону – Крику , молекула ДНК состоит из двух полинуклеотидных цепочек, закрученных вправо вокруг одной и той же оси , образуя двойную спираль . Цепи распложены антипараллельно, т.е. навстречу друг другу. Объединяются две полинуклеотидные цепи в единую молекулу ДНК при помощи водородных связей, возникающих между азотистым основанием нуклеотидов разных цепей. В полинуклеотидной цепочке соседние нуклеотиды связаны между собой ковалентными связями, которые образуются между дезоксирибозой, в молекуле ДНК (и рибозой в РНК), одного и остатком фосфорной кислоты другого нуклеотида.

Цепи двойной спирали комплементарны друг другу, т. к. спаривание оснований происходит в строгом соответствии: аденин соединяется с тимином, а гуанин – с цитозином.

В результате у всякого организма Рис. Спаривание нуклеотидов.

число адениловых нуклеотидов равно числу тимидиловых , а число гуаниловых – числу цитидиловых. Эта закономерность получила название «правило Чаргаффа».

Строгое соответствие нуклеотидов, расположенных в парных антипараллельных нитях ДНК, называются комплементарностью. Это свойство лежит в основе образования новых молекул ДНК на базе исходной молекулы.

Таким образом, двойная спираль стабилизирована многочисленными водородными свойствами (между А и Т образуется две, а между Г и Ц – три) и гидрофобными взаимодействиями.

Вдоль оси молекулы соседние пары оснований располагаются на расстоянии 0,34 нм одна от другой. Полный оборот спирали приходится на 3,4 нм, т. е. на 10 пар оснований (один виток). Диаметр спирали – 2 нм. Расстояние между углеводными компонентами двух спаренных нуклеотидов 1,1 нм. Длина молекулы нуклеиновых кислот достигает сотен тысяч нанометров. Это значительно больше самой крупной макромолекулы белка, которая в развернутом виде достигает в длину не более 100-200 нм. Масса молекулы ДНК составляет 6*10 -12 г.

Процесс удвоения молекулы ДНК называется репликацией . Репликация происходит следующим образом. Под действием специальных ферментов (геликаза) разрываются водородные связи между нуклеотидами двух цепочек. Спираль раскручивается. К освободившимся связям, по принципу комплементарности, присоединяются соответствующие нуклеотиды ДНК, в присутствии фермента ДНК-полимеразы. Это наращивание может происходить только в направлении 5"→ 3". Это означает непрерывного возможность копирования только одной цепи ДНК (на рисунке верхняя). Этот процесс называется непрерывнаярепликация . Копирование другой цепи должно всякий раз начинаться вновь, в результате в цепи возникают разрывы. Для их ликвидации необходим фермент – ДНК-лигаза. Такую репликацию называют прерывистой .

Данный способ репликации ДНК, предложенный Уотсоном и Криком известен под названием полуконсервативная репликация .

Следовательно, порядок нуклеотидов в «старой» цепочке ДНК определяет порядок нуклеотидов в «новой», т.е. «старая» цепочка ДНК как бы является матрицей для синтеза «новой». Такие реакции называются реакции матричного синтеза ; они характерны только для живого.

Репликация (редупликация) позволяет сохранить постоянство структуры ДНК. Синтезированная молекула ДНК абсолютно идентична исходной по последовательности нуклеотидов. Если под воздействием различных факторов в процессе репликации в молекуле ДНК происходят изменения в числе и порядке следования нуклеотидов, то возникают мутации. Способность молекул ДНК исправлять возникающие изменения и восстанавливать исходную называется репарацией .

Функции ДНК:

1) Хранение наследственной информации.

ДНК хранит информацию в виде последовательности нуклеотидов.

2) Воспроизведение и передача генетической информации.

Возможность передачи информации дочерним клеткам обеспечивается способностью хромосом к разделению на хроматиды с последующей редупликацией молекул ДНК. В ней закодирована генетическая информация о последовательности аминокислот в молекуле белка. Участок ДНК, несущий информацию об одной полипептидной цепи, называется геном.

3) Структурная.

ДНК присутствует в хромосомах в качестве структурного компонента, т.е. является химической основой хромосомного генетического материала (гена).

4) ДНК является матрицей для создания молекул РНК.

РНК содержиться во всех живых клетках в виде одноцепочечных молекул. Она отличается от ДНК тем, что содержит в качестве пентозы рибозу (вместо дезоксирибозы), а в качестве одного из пиримидиновых оснований – урацил (вместо тимина). Существует три типа РНК. Это матричная, или информационная, РНК (мРНК, иРНК), транспортная РНК (тРНК) и рибосомная РНК (рРНК). Все три синтезируются непосредственно на ДНК, а количество РНК в каждой клетке зависит от количества вырабатываемого этой клеткой белка.

В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей (фосфодиэфирные связи) между рибозой одного нуклеотида и остатком фосфорной кислоты другого.

В отличие от ДНК, молекулы РНК, представляют собой одноцепочечный линейный биополимер, состоящий из нуклеотидов.

Двухцепочечные РНК служат для хранения и воспроизведения наследственной информации у некоторых вирусов, т.е. выполняют у них функции хромосом – вирусная РНК.

Нуклеотиды одной молекулы РНК могут вступать в комплементарные взаимоотношения с другими нуклеотидами этой же цепочки, в результате образования вторичной и третичной структуры молекул РНК.

Рис. Строение транспортной РНК.

Рибисомальная РНК (рРНК) составляет 85% всей РНК клетки, она синтезируется в ядрышке, в соединение с белком входит в состав рибосом, митохондрий (митохондриальная РНК) и пластид (пластидная РНК). Содержит от 3 до 5 тыс. нуклеотидов. На рибосомах идет синтез белка.

Функции : рРНК выполняет структурную функцию (входит в состав рибосом) и участвует в формировании активного центра рибосом, где происходит образование пептидных связей между молекулами аминокислот в процессе биосинтеза белка.

Информационная РНК (иРНК) составляет 5% всей РНК в клетках. Она синтезируется в процессе транскрипции на определенном участке молекулы ДНК – гене. По строению иРНК комплементарна участку молекул ДНК, несущему информацию о синтезе определенного белка. Длина иРНК зависит от длины участка ДНК, с которого считывалась информация (может состоять из 300-30000 нуклеотидов)

Функции : иРНК переносит информацию о синтезе белка из ядра в цитоплазму на рибосомы и становится матрицей для синтеза молекул белка.

Транспортная РНК (тРНК) составляет около 10% всей РНК, синтезируется в ядрышке, имеет короткую цепь нуклеотидов и находится в цитоплазме. Она имеет функцию трилистника. У каждой аминокислоты имеется собственная семья молекул тРНК. Они доставляют содержащиеся в цитоплазме аминокислоты к рибосоме.

Функции : на одном конце находится триплет нуклеотидов (антикодон), кодирующий определенную аминокислоту. На другом конце триплет нуклеотидов, к которому присоединяется аминокислота. Для каждой аминокислоты – своя тРНК.


Которую мы наследуем от своих предков. Если у вас есть дети, ваша генетическая информация в их геноме будет рекомбинирована и объединена с генетической информацией вашего партнера. Ваш собственный геном дублируется всякий раз, когда каждая из клеток делится. Кроме того, нуклеиновые кислоты содержат определенные сегменты, называемые генами, которые отвечают за синтез всех протеинов в клетках. Свойства генов контролируют биологические характеристики вашего организма.

Общие сведения

Различают два класса нуклеиновых кислот: (более известную как ДНК) и (более известную как РНК).

ДНК представляет собой нитевидную цепь генов, которая необходима для роста, развития, жизнедеятельности и размножения всех известных живых организмов и большинства вирусов.

Изменения в ДНК многоклеточных организмов приведет к изменениям у последующих поколений.

ДНК - это биогенетический субстрат, обнаруженный во всех существующих живых существ, от простейших живых организмов до высокоорганизованных млекопитающих.

Многие вирусные частицы (вирионы) содержат в ядре РНК в качестве генетического материала. Однако нужно упомянуть, что вирусы лежат на границе живой и неживой природы, так как без клеточного аппарата хозяина они остаются неактивными.

Историческая справка

В 1869 году Фридрих Мишер выделил ядра из лейкоцитов и обнаружил, что они содержат богатое фосфором вещество, которое он назвал нуклеином.

Герман Фишер в 1880-х годах обнаружил пуриновые и пиримидиновые основания в нуклеиновых кислотах.

В 1884 году Р. Гертвиг предположил, что нуклеины ответственны за передачу наследственных признаков.

В 1899 году Рихард Альтман ввел термин «кислота ядра».

И уже позднее, в 40-х годах 20-го века, ученые Касперссон и Браше обнаружили связь между нуклеиновыми кислотами с синтезом белка.

Нуклеотиды

Полинуклеотиды строятся из множества нуклеотидов - мономеров, соединенных вместе в цепочки.

В строении нуклеиновых кислот выделяют нуклеотиды, каждый из которых имеет в составе:

  • Азотистое основание.
  • Пентозный сахар.
  • Фосфатную группу.

Каждый нуклеотид содержит азотсодержащее ароматическое основание, прикрепленное к пентозному (пятиуглеродному) сахариду, который, в свою очередь, присоединен к остатку фосфорной кислоты. Такие мономеры, соединяясь друг с другом, образуют полимерные цепочки. Они соединены ковалентными водородными связями, возникающими между фосфорным остатком одной и пентозным сахаром другой цепочки. Данные связи называются фосфодиэфирными. Фосфодиэфирные связи формируют фосфатно-углеводный каркас (скелет) как ДНК, так и РНК.

Дезоксирибонуклеотид

Рассмотрим свойства нуклеиновых кислот, находящихся в ядре. ДНК формирует хромосомный аппарат ядра наших клеток. ДНК содержит «программные инструкции» для нормального функционирования клетки. Когда клетка воспроизводит себе подобную, эти инструкции передаются новой клетке в ходе митоза. ДНК имеет вид двухцепочечной макромолекулы, скрученной в двойную спиралевидную нить.

В составе нуклеиновой кислоты присутствует фосфат-дезоксирибозный сахаридный скелет и четыре азотистых основания: аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). В двухцепочечной спирали аденин образует пару с тимином (А-Т), гуанин - с цитозином (Г-Ц).

В 1953 году Джеймс Д. Уотсон и Фрэнсис Х.К. Крик предложили трехмерную структуру ДНК, основанную на рентгеновских кристаллографических данных с низким разрешением. Они также ссылались на выводы биолога Эрвина Чаргаффа о том, что в ДНК количество тимина эквивалентно количеству аденина, а количество гуанина эквивалентно количеству цитозина. Уотсон и Крик, заслужившие Нобелевскую премию в 1962 году за свой вклад в науку, выдвинули постулат о том, что две нити полинуклеотидов образуют двойную спираль. Нити, хотя они и идентичны, но закручиваются в противоположных направлениях. Фосфат-углеродистые цепочки расположены на внешней стороне спирали, а основания лежат внутри, где они связываются с основаниями на другой цепочке через ковалентные связи.

Рибонуклеотиды

Молекула РНК существует как одноцепочечная спиралевидная нить. В структуре РНК присутствует фосфат-рибозный углеводный скелет и нитратные основания: аденин, гуанин, цитозин и урацил (У). Когда РНК в ходя транскрипции создается на матрице ДНК, гуанин формирует пару с цитозином (Г-Ц) и аденин с урацилом (А-У).

Фрагменты РНК используются для воспроизведения белков внутри всех живых клеток, что обеспечивает непрерывный их рост и деление.

Существуют две основные функции нуклеиновых кислот. Во-первых, они помогают ДНК, служа посредниками, передающими необходимую наследственную информацию бесчисленному количеству рибосом в нашем теле. Другая основная функция РНК заключается в доставке правильной аминокислоты, необходимой каждой рибосоме для создания нового белка. Выделяют несколько различных классов РНК.

Информационная РНК (иРНК, или мРНК - матричная) представляет собой копию базовой последовательности участка ДНК, полученную в результате транскрипции. Информационная РНК служит посредником между ДНК и рибосомами - органеллами клеток, которые принимают аминокислоты от транспортной РНК, и используют их для построения полипептидной цепи.

Активирует считывание наследственных данных с матричной РНК, в результате чего запускается процесс трансляции рибонуклеиновой кислоты - синтез белка. Она также переносит нужные аминокислоты к местам, где синтезируется белок.

Рибосомальная РНК (рРНК) является основным строительным материалом рибосом. Она связывает матричный рибонуклеотид в определенном месте, где возможно считать его информацию, тем самым запуская процесс трансляции.

МикроРНК - это небольшие молекулы РНК, выполняющие роль регуляторов многих генов.

Функции нуклеиновых кислот чрезвычайно важны для жизни в целом и для каждой клетки в частности. Почти все функции, которые выполняет клетка, регулируются белками, синтезированными с помощью РНК и ДНК. Ферменты, белковые продукты, катализируют все жизненно важные процессы: дыхание, пищеварение, все виды обмена веществ.

Различия между строением нуклеиновых кислот

Отличительные свойства оснований нуклеиновых кислот

Аденин и гуанин по своим свойствам являются пуринами. Это значит, что их молекулярная структура включает два конденсированных бензольных кольца. Цитозин и тимин, в свою очередь, относятся к пиримидинам, и имеют одно бензольное кольцо. РНК-мономеры строят свои цепочки используя адениновые, гуаниновые и цитозиновые основания, а вместо тимина они присоединяют урацил (У). Каждое из пиримидиновых и пуриновых оснований имеют свою уникальную структуру и свойства, собственный набор функциональных групп, сцепленных с бензольным кольцом.

В молекулярной биологии приняты специальные однобуквенные сокращения для обозначения азотистых оснований: А, Т, Г, Ц, или У.

Пентозный сахар

В дополнение к различному набору азотистых оснований, ДНК- и РНК-мономеры отличаются входящим в состав пентозным сахаром. Пятиатомный углевод в ДНК - дезоксирибоза, тогда как в РНК - рибоза. Они почти идентичны по строению, лишь с одной разницей: рибоза присоединяет гидроксильную группу, а у дезоксирибозы она замещена атомом водорода.

Выводы

В эволюции биологических видов и непрерывности жизни роль нуклеиновых кислот невозможно переоценить. Как неотъемлемая часть всех ядер живых клеток, они ответственны за активацию всех процессов жизнедеятельности, протекающих в клетках.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.