Двойной интеграл. Основные определения и свойства

ДВОЙНЫЕ ИНТЕГРАЛЫ

ЛЕКЦИЯ 1

Двойные интегралы. Определение двойного интеграла и его свойства. Повторные интегралы. Сведение двойных интегралов к повторным. Расстановка пределов интегрирования. Вычисление двойных интегралов в декартовой системе координат.

Двойной интеграл представляет собой обобщение понятия определенного интеграла на случай функции двух переменных. В этом случае вместо отрезка интегрирования будет присутствовать какая-то плоская фигура.

Пусть D – некоторая замкнутая ограниченная область, а f (x,y ) – произвольная функция, определенная и ограниченная в этой области. Будем предполагать, что границы области D состоят из конечного числа кривых, заданных уравнениями вида y =f (x ) или x =g(y ), где f (x ) и g (y ) – непрерывные функции.

Разобьем область D произвольным образом на n частей. Площадь i -го участка обозначим символом Ds i . На каждом участке произвольно выберем какую-либо точку P i , и пусть она в какой-либо фиксированной декартовой системе имеет координаты (x i ,y i ). Составим интегральную сумму для функции f (x,y ) по области D, для этого найдем значения функции во всех точках P i , умножим их на площади соответствующих участков Ds i и просуммируем все полученные результаты:

Назовем диаметром diam (G ) области G наибольшее расстояние между граничными точками этой области.

Двойным интегралом функции f (x,y ) по области D называется предел, к которому стремится последовательность интегральных сумм (1.1) при неограниченном увеличении числа разбиений n (при этом ). Это записывают следующим образом

Заметим, что, вообще говоря, интегральная сумма для заданной функции и заданной области интегрирования зависит от способа разбиения области D и выбора точек P i . Однако если двойной интеграл существует, то это означает, что предел соответствующих интегральных сумм уже не зависит от указанных факторов. Для того чтобы двойной интеграл существовал (или, как говорят, чтобы функция f (x,y ) была интегрируемой в области D), достаточно чтобы подынтегральная функция была непрерывной в заданной области интегрирования .

Пусть функция f (x,y ) интегрируема в области D . Поскольку предел соответствующих интегральных сумм для таких функций не зависит от способа разбиения области интегрирования, то разбиение можно производить при помощи верти­кальных и горизонтальных линий. Тогда большинство участков области D будет иметь прямоугольный вид, площадь которых равна Ds i =Dx i Dy i . Поэтому дифференциал площади можно записать в виде ds=dxdy . Следовательно, в декартовой системе координат двойные интегралы можно записывать в виде



Замечание . Если подынтегральная функция f (x,y )º1, то двойной интеграл будет равен площади области интегрирования:

Отметим, что двойные интегралы обладают такими же свойствами, что и определенные интегралы. Отметим некоторые из них.

Свойства двойных интегралов.

1 0 . Линейное свойство. Интеграл от суммы функций равен сумме интегралов :

и постоянный множитель можно выносить за знак интеграла :

2 0 . Аддитивное свойство. Если область интегрирования D разбить на две части, то двойной интеграл будет равен сумме интегралов по каждой этой части :

3 0 . Теорема о среднем. Если функция f(x,y ) непрерывна в области D, то в этой области найдется такая точка (x,h), что :

Далее возникает вопрос: как вычисляются двойные интегралы? Его можно вычислить приближенно, с этой целью это разработаны эффективные методы составления соответствующих интегральных сумм, которые затем вычисляются численно при помощи ЭВМ. При аналитическом вычислении двойных интегралов их сводят к двум определенным интегралам.

1.1 Определение двойного интеграла





1.2 Свойства двойного интеграла

Свойства двойного интеграла (и их вывод) аналогичны соответствующим свойствам однократного определенного интеграла.

1°. Аддитивность. Если функция f(x, y) интегрируема в области D и если область D при помощи кривой Г площади нуль разбивается на две связные и не имеющие общих внутренних точек области D 1 и D 2 , то функция f(x, y) интегрируема в каждой из областей D 1 и D 2 , причем

2°. Линейное свойство. Если функции f(x, y) и g(x, y) интегрируемы в области D, а? и? - любые вещественные числа, то функция [? · f(x, y) + ?· g(x, y)] также интегрируема в области D, причем

3°. Если функции f(x, y) и g(x, y) интегрируемы в области D, то и произведение этих функций интегрируемо в D.

4°. Если функции f(x, y) и g(x, y) обе интегрируемы в области D и всюду в этой области f(x, y) ? g(x, y), то

5°. Если функция f(x, y) интегрируема в области D, то и функция |f(x, y)| интегрируема в области D, причем

(Конечно, из интегрируемости |f(x, y)| в D не вытекает интегрируемость f(x, y) в D.)

6°. Теорема о среднем значении. Если обе функции f(x, y) и g(x, y) интегрируемы в области D, функция g(x, y) неотрицательна (неположительна) всюду в этой области, M и m - точная верхняя и точная нижняя грани функции f(x, y) в области D, то найдется число?, удовлетворяющее неравенству m ? ? ? M и такое, что справедлива формула

В частности, если функция f(x, y) непрерывна в D, а область D связна, то в этой области найдется такая точка (?, ?), что? = f(?, ?), и формула принимает вид

7°. Важное геометрическое свойство. равен площади области D

Пусть в пространстве дано тело T (рис. 2.1), ограниченное снизу областью D , сверху - графиком непрерывной и неотрицательной функции) z=f (x, y ,) которая определена в области D , с боков - цилиндрической поверхностью, направляющей которой является граница области D , а образующие параллельны оси Оz. Тело такого вида называется цилиндрическим телом.

1.3 Геометрическая интерпретация двойного интеграла






1.4 Понятие двойного интеграла для прямоугольника

Пусть произвольная функция f(x, y) определена всюду на прямоугольнике R = ? (см. Рис. 1).

Разобьем сегмент a ? x ? b на n частичных сегментов при помощи точек a = x 0 < x 1 < x 2 < ... < x n = b, а сегмент c ? y ? d на p частичных сегментов при помощи точек c = y 0 < y 1 < y 2 < ... < y p = d.

Этому разбиению при помощи прямых, параллельных осям Ox и Oy, соответствует разбиение прямоугольника R на n · p частичных прямоугольников R kl = ? (k = 1, 2, ..., n; l = 1, 2, ..., p). Указанное разбиение прямоугольника R обозначим символом T. В дальнейшем в этом разделе под термином "прямоугольник" будем понимать прямоугольник со сторонами, параллельными координатным осям.

На каждом частичном прямоугольнике R kl выберем произвольную точку (? k , ? l). Положив?x k = x k - x k-1 , ?y l = y l - y l-1 , обозначим через?R kl площадь прямоугольника R kl . Очевидно, ?R kl = ?x k ?y l .

называется интегральной суммой функции f(x, y), соответствующей данному разбиению T прямоугольника R и данному выбору промежуточных точек (? k , ? l) на частичных прямоугольниках разбиения T.

Диагональ будем называть диаметром прямоугольника R kl . Символом? обозначим наибольший из диаметров всех частичных прямоугольников R kl .

Число I называется пределом интегральных сумм (1) при? > 0, если для любого положительного числа? можно указать такое положительное число?, что при? < ? независимо от выбора точек (? k , ? l) на частичных прямоугольниках R выполняется равенство

| ? - I | < ?.

Функция f(x, y) называется интегрируемой (по Риману) на прямоугольнике R, если существует конечный предел I интегральных сумм этой функции при? > 0.

Указанный предел I называется двойным интегралом от функции f(x, y) по прямоугольнику R и обозначается одним из следующих символов:

Замечание. Точно также, как и для однократного определенного интеграла, устанавливается, что любая интегрируемая на прямоугольнике R функция f(x, y) является ограниченной на этом прямоугольнике.

Это дает основание рассматривать в дальнейшем лишь ограниченные функции f(x, y).

Свойства двойных интегралов.

Часть свойств двойных интегралов непосредственно вытекает из определения этого понятия и свойств интегральных сумм, а именно:

1. Если функция f(x, y) интегрируема в D , то kf(x, y) тоже интегрируема в этой области, причем (24.4)

2. Если в области D интегрируемы функции f(x, y) и g(x, y) , то в этой области интегрируемы и функции f(x, y) ± g(x, y) , и при этом

3. Если для интегрируемых в области D функций f(x, y) и g(x, y) выполняется неравенство f(x, y) g(x, y) , то

(24.6)

Докажем еще несколько свойств двойного интеграла :

4. Если область D разбита на две области D 1 и D 2 без общих внутренних точек и функция f(x, y) непрерывна в области D , то

(24.7) Доказательство . Интегральную сумму по области D можно представить в виде:

где разбиение области D проведено так, что граница между D 1 и D 2 состоит из границ частей разбиения. Переходя затем к пределу при , получим равенство (24.7).

5. В случае интегрируемости на D функции f(x, y) в этой области интегрируема и функция | f(x, y) | , и имеет место неравенство

(24.8)

Доказательство.

откуда с помощью предельного перехода при получаем неравенство (24.8)

6. где S D – площадь области D. Доказательство этого утверждения получим, подставляя в интегральную сумму f(x, y) ≡ 0.

7. Если интегрируемая в области D функция f(x, y) удовлетворяет неравенству

m ≤ f(x, y) ≤ M ,

то (24.9)

Доказательство.

Доказательство проводится предельным переходом из очевидного неравенства

Следствие.

Если разделить все части неравенства (24.9) на D , можно получить так называемую теорему о среднем:

В частности, при условии непрерывности функции f в D найдется такая точка этой области (х 0 , у 0 ), в которой f (х 0 , у 0 ) = μ , то есть

-

Еще одна формулировка теоремы о среднем.

Геометрический смысл двойного интеграла.

Рассмотрим тело V , ограниченное частью поверхности, задаваемой уравнением z = f(x, y), проекцией D этой поверхности на плоскость Оху и боковой цилиндрической поверхностью, полученной из вертикальных образующих, соединяющих точки границы поверхности с их проекциями.

z=f(x,y)


V


y P i D Рис.2.

Будем искать объем этого тела как предел суммы объемов цилиндров, основаниями которых являются части ΔS i области D , а высотами – отрезки длиной f (P i ), где точки P i принадлежат ΔS i . Переходя к пределу при , получим, что

(24.11)

то есть двойной интеграл представляет собой объем так называемого цилиндроида, ограниченного сверху поверхностью z = f(x, y) , а снизу – областью D .

Вычисление двойного интеграла путем сведения его к повторному.

Рассмотрим область D , ограниченную линиями x = a, x = b (a < b ), где φ 1 (х ) и φ 2 (х ) непрерывны на [a, b ]. Тогда любая прямая, параллельная координатной оси Оу и проходящая через внутреннюю точку области D , пересекает границу области в двух точках: N 1 и N 2 (рис.1). Назовем такую область правильной в на-

у правлении оси Оу . Аналогично определя-

y=φ 2 (x )ется область, правильная в направлении

N 2 оси Ох . Область, правильную в направле-

Нии обеих координатных осей, будем на-

D зывать просто правильной. Например,

правильная область изображена на рис.1.

y=φ 1 (x ) N 1

O a b x

Пусть функция f(x, y) непрерывна в области D . Рассмотрим выражение

, (24.12)

называемое двукратным интегралом от функции f(x, y) по области D . Вычислим вначале внутренний интеграл (стоящий в скобках) по переменной у , считая х постоянным. В результате получится непрерывная функция от х :

Полученную функцию проинтегрируем по х в пределах от а до b . В результате получим число

Докажем важное свойство двукратного интеграла.

Теорема 1. Если область D , правильная в направлении Оу , разбита на две области D 1 и D 2 прямой, параллельной оси Оу или оси Ох , то двукратный интеграл по области D будет равен сумме таких же интегралов по областям D 1 и D 2:

Доказательство.

а) Пусть прямая х = с разбивает D на D 1 и D 2 , правильные в направлении Оу . Тогда

+

+

б) Пусть прямая y = h разбивает D на правильные в направлении Оу области D 1 и D 2 (рис.2). Обозначим через M 1 (a 1 , h ) и M 2 (b 1 , h ) точки пересечения прямой y = h с гра-ницей L области D .

y Область D 1 ограничена непрерывными линиями

y=φ 2 (x ) 1) y = φ 1 (x );

D 2 2) кривой А 1 М 1 М 2 В , уравнение которой запишем

h M 1 M 2 y = φ 1 *(x ), где φ 1 *(х ) = φ 2 (х ) при а ≤ х ≤ а 1 и

A 1 D 1 B b 1 ≤ x ≤ b , φ 1 *(х ) = h при а 1 ≤ х ≤ b 1 ;

3) прямыми x = a , x = b .

Область D 2 ограничена линиями y = φ 1 *(x ),

A у = φ 2 (х ), а 1 ≤ х ≤ b 1 .

y=φ 1 (x ) Применим к внутреннему интегралу теорему о

разбиении промежутка интегрирования:

O a a 1 b 1 b

+

Представим второй из полученных интегралов в виде суммы:

+ + .

Поскольку φ 1 *(х ) = φ 2 (х ) при а ≤ х ≤ а 1 и b 1 ≤ x ≤ b , первый и третий из полученных интегралов тождественно равны нулю. Следовательно,

I D = , то есть .

Задача, приводящая к понятию двойного интеграла.

Предположим, что на определена функция частей и запишем сумму

которая именуется интегральной.

О: Под определенным интегралом (о.и.) от функции и от выбора

Обозначение:

Числа именуют интегрируемой (по Риману) на .

Т. существования: При условии, что .

В соответствии с определением о.и. отметим, что интеграл имеет зависимость от вида , пределов и , однако не зависит от символа обозначения переменной , иначе выражаясь

В соответствии с п.17.1.1 и 17.1.2 и определением о.и. запишем формулы площади криволинейной трапеции: , работы силы

на :

Понятие двойного интеграла, интегральных сумм.

Существование двойного интеграла, т. е. предела интегральной суммы для кажется очевидным, так как этот предел дает объем цилиндрического тела. Однако это рассуждение не является строгим. В более полных курсах это утверждение строго доказывается и носит название теоремы существования двойного интеграла.

Теорема существования. Для всякой функции, непрерывной в ограниченной замкнутой области, имеющей площадь а, существует двойной интеграл, т. е. существует предел интегральных сумм при неограниченном увеличении числа малых площадок при условии, что каждая из них стягивается в точку. Этот предел не зависит ни от способа разбиения области а на части ни от выбора точек

В дальнейшем мы будем рассматривать только функции, непрерывные в области интегрирования.

Из теоремы существования следует, что мы можем, например, разбить область а на малые прямоугольники со сторонами прямыми, параллельными осям координат (рис. 230). При этом. Выбирая затем в каждом малом прямоугольнике по точке мы можем написать, согласно определению двойного интеграла

Для того чтобы подчеркнуть, что двойной интеграл можно получить как предел суммы вида вместо обозначения употребляют также обозначение

Выражение называется элементом площади в декартовых координатах и равно площади прямоугольника со сторонами параллельными координатным осям.

Заметим, что при составлении интегральной суммы площадки прилегающие к границе области а, не имеют формы прямоугольников. Однако можно доказать, что ошибка от замены таких площадок прямоугольниками с площадями в пределе сведется к нулю.

Свойства двойных интегралов

Свойства двойного интеграла (и их вывод) аналогичны соответствующим свойствам однократного определенного интеграла.

. Аддитивность . Если функция f (x , y ) интегрируема в области D и если область D при помощи кривой Г площади нуль разбивается на две связные и не имеющие общих внутренних точек области D 1 и D 2 , то функция f (x , y ) интегрируема в каждой из областей D 1 и D 2 , причем

. Линейное свойство . Если функции f (x , y ) и g (x , y ) интегрируемы в области D , а α и β - любые вещественные числа, то функция [α · f (x , y ) + β · g (x , y )] также интегрируема в области D , причем

. Если функции f (x , y ) и g (x , y ) интегрируемы в области D , то и произведение этих функций интегрируемо в D .

. Если функции f (x , y ) и g (x , y ) обе интегрируемы в области D и всюду в этой области f (x , y ) ≤ g (x , y ), то

. Если функция f (x , y ) интегрируема в области D , то и функция |f (x , y )| интегрируема в области D , причем

(Конечно, из интегрируемости |f (x , y )| в D не вытекает интегрируемость f (x , y ) в D .)

. Теорема о среднем значении . Если обе функции f (x , y ) и g (x , y ) интегрируемы в области D , функция g (x , y ) неотрицательна (неположительна) всюду в этой области, M и m - точная верхняя и точная нижняя грани функции f (x , y ) в области D , то найдется число μ , удовлетворяющее неравенству m μ M и такое, что справедлива формула

В частности, если функция f (x , y ) непрерывна в D , а область D связна , то в этой области найдется такая точка (ξ , η ), что μ = f (ξ , η ), и формула (11) принимает вид

Двойной интеграл обладает свойствами, аналогичными свойствам определенного интеграла. Отметим лишь основные из них:

1. Если функции и
интегрируемы в области
, то интегрируемы в ней их сумма и разность, причем

2. Постоянный множитель можно выносить за знак двойного интеграла:

3. Если
интегрируема в области
, а эта область разбита на две непересекающиеся областии
, то

.

4. Если
и
интегрируемы в области
, в которой

, то


.

5. Если в области
функция
удовлетворяет неравенствам


,где
и
некоторые действительные числа, то



,

где – площадь области
.

Доказательства этих свойств аналогичны доказательству соответствующих теорем для определенного интеграла.

Вычисление двойного интеграла в прямоугольных декартовых координатах

Пусть требуется вычислить двойной интеграл
, где область- прямоугольник, определяемый неравенствами,.

Предположим, что
непрерывна в этом прямоугольнике и принимает в нем неотрицательные значения, тогда данный двойной интеграл равен объему тела с основанием, ограниченного сверху поверхностью
, с боков - плоскостями
,
,
,
:

.

С другой стороны, объем такой фигуры можно вычислить с помощью определенного интеграла:

,

где
- площадь сечения данного тела плоскостью, проходящей через точкуи перпендикулярной к оси
. А так как рассматриваемое сечение является криволинейной трапецией
, ограниченной сверху графиком функции
, гдефиксировано, а, то

.

Из этих трех равенств следует, что


.

Итак, вычисление данного двойного интеграла свелось к вычислению двух определенных интегралов; при вычислении «внутреннего интеграла» (записанного в скобках) считается постоянным.

Замечание. Можно доказать, что последняя формула верна и при
, а также в случае, когда функция
меняет знак в указанном прямоугольнике.

Правая часть формулы называется повторным интегралом и обозначается так:

.

Аналогично можно показать, что



.

Из выше сказанного следует, что


.

Последнее равенство означает, что результат интегрирования не зависит от порядка интегрирования.

Чтобы рассмотреть более общий случай, введем понятие стандартной области. Стандартной (или правильной) областью в направлении данной оси называется такая область, для которой любая прямая, параллельная этой оси пересекает границу области не более, чем в двух точках. Другими словами, пересекает саму область и ее границу только по одному отрезку прямой.

Предположим, что ограниченная область

и ограничена сверху графиком функции
, снизу - графиком функции
. ПустьR{,} - минимальный прямоугольник, в котором заключена данная область
.

Пусть в области
определена и непрерывна функция
. Введем новую функцию:

,

тогда в соответствии со свойствами двойного интеграла


.

И, следовательно,


.

Поскольку отрезок
целиком принадлежит области
то, следовательно,
при


, а еслилежит вне этого отрезка, то
.

При фиксированном можем записать:

.

Так как первый и третий интегралы в правой части равны нулю, то

.

Следовательно,


.

Из чего получаем формулу для вычисления двойного интеграла по области, стандартной относительно оси
путем сведения к повторному интегралу:


.

Если область
является стандартной в направлении оси
и определяется неравенствами,

, аналогично можно доказать, что


.

Замечание. Для области
, стандартной в направлении осей
и
, будут выполнены оба последних равенства, поэтому


По этой формуле осуществляется изменение порядка интегри­рования при вычислении соответствующего двойного интеграла.

Замечание. Если область интегрирования не является стандартной (правильной) в направлении обеих осей координат, то ее разбивают на сумму стандартных областей и представляют интеграл в виде суммы интегралов по этим областям.

Пример . Вычислить двойной интеграл
по области
, ограниченной линиями:
,
,
.

Решение.

Данная область является стандартной как относительно оси
, так и относительно оси
.

Вычислим интеграл, считая область стандартной относительно оси
.


.

Замечание. Если вычислить интеграл, считая область стандартной относительно оси
, мы получим тот же результат:


.

Пример . Вычислить двойной интеграл
по области
, ограниченной линиями:
,
,
.

Решение. Изобразим на рисунке заданную область интегрирования.

Данная область является стандартной относительно оси
.


.

Пример . Изменить порядок интегрирования в повторном интеграле:

Решение. Изобразим на рисунке область интегрирования.

Из пределов интегрирования находим линии, ограничивающие область интегрирования: ,
,
,
. Для изменения порядка интегрирования выразимкак функции оти найдем точки пересечения:

,
,
.

Так как на одном из интервалов функция выражена двумя аналитическими выражениями, то область интегрирования необходимо разбить на две области, а повторный интеграл представить как сумму двух интегралов.


.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.