Развитие технологии автоматического распознавания образов. Обзор существующих методов распознавания образов

Современные роботы, снабженные системами технического зрения, способны хорошо видеть, чтобы работать с реальным миром. Они могут делать заключение о том, какого типа объекты присутствуют, в каких отношениях они находятся между собой, какие группы образуют.

Суть задачи распознавания – установить, обладают ли изучаемые объекты фиксированным конечным набором признаков, позволяющим отнести и ке определенному классу.

Цели науки распознавания образов:

Замена человеческого эксперта или сложной экспертной системы более простой системой (автоматизация деятельности человека или упрощение сложных систем);

Построение обучающихся систем, которые умеют принимать решения без указания четких правил, а именно, систем, которые умеют сами синтезировать правила принятия решений на основе некоторого конечного количества «продемонстрированных» системе примеров правильных решений.

Задачи распознавания можно охарактеризовать следующим образом.

1.Это информационные задачи, состоящие из двух основных этапов: приведение исходных данных к виду, удобному для распознавания и собственно распознавание.

2. В эти задачах можно вводить понятие аналогии Ии подобия объектов и формулировать понятие близости объектов в качестве основания для зачисления объекта в определенный класс.

3. В этих задачах можно оперировать набором примеров, классификация которых известна и которые в виде формализованных описаний могут быть предъявлены алгоритму распознавания для настройки на задачу в процессе обучения.

4. Для этих задач трудно строить формальные теории и применять классические математические методы.

5. В этих задачах возможна «плохая» информация.

Типы задач распознавания:

Отнесение предъявленного объекта к одному из классов (обучение с учителем);

Автоматическая классификация – разбиение множества объектов (ситуаций) по их описанияю на систему непересекающихся классов;

Выбор набора информатиыных признаков при распощнавании;

Приведение исходных данных к виду, удобному для распознавания;

Динамическое распознавание и динамическая классификация;

Задачи прогнозирования.

Основные определения

Образ – этоcтруктурированное описание объекта или явления, представленное вектором признаков, каждый элемент которого представляет числовое значение одного из признаков, характеризующих данный объект. Другими словами: образ - любой объект, для которого можно измерить набор определенных числовых признаков. Пример образа: буква, изображение, кардиограмма, и т.п.

Числовой признак (или просто признак). – это формула или иное описание способа сопоставления объекту некоторой числовой характеристики, которое действует в рамках конкретной задачи распознавания образов. Для каждого объекта может быть определено несколько различных признаков, то есть несколько числовых характеристик.

Пространство признаков .N-мерное пространство, определенное для данной задачи распознавания, гдеN– фиксированное число измеряемых признаков для любых объектов. Вектор из пространства признаков, соответствующий объекту задачи распознавания этоN-мерный вектор с компонентами (х1,х2, …, хN), которые являются значениями признаков данного объекта.

ОБЪЕКТ->Nпризнаков->M-мерный вектор признаков

Класс - неформализируемое (как правило) представление о возможности отнесения произвольного объекта из множества объектов задачи распознавания к определенной группе объектов. Для объектов одного класса предполагается наличие «схожести». Для задачи распознавания образов может быть определено произвольное количество классов, большее 1. Количество классов обозначается числомS.

В целом проблема распознавания образов состоит из двух частей: распознавания и обучении.

Распознавание образов заключается в классификации некоторой группы объектов на основе определенных требований. Объекты, относимые к одному классу образов, обладают общими свойствами. Требования, определяющие классификацию, могут быть различными, так как в различных ситуациях возникает необходимость в различных типах классификаций.

Например, при распознавании английских букв образуется 26 классов образов. Однако, чтобы отличить при распознавании английские буквы от китайских иероглифов, нужны лишь два класса образов.

Простейший подход к распознаванию образов заключается в сопоставлении с эталонами. В этом случае некоторое множество образов, по одному из каждого класса образов, хранится в памяти машины. Входной (распознаваемый) образ (неизвестного класса) сравнивается с эталоном каждого класса. Классификация основывается на заранее выбранном критерии соответствия или критерии подобия. Другими словами, если входной образ лучше соответствует эталону i-го класса образов, чем любому другому эталону, то входной образ классифицируется как принадлежащийi-му классу образов.

Недостаток этого подхода, т. е. сопоставления с эталоном, заключается в том, что в ряде случаев трудно выбрать подходящий эталон из каждого класса образов и установить необходимый критерий соответствия.

Более совершенный подход заключается в том, что классификация основывается на некотором множестве отобранных замеров, производимых на входных образах. Эти отобранные замеры, называемые «признаками», предполагаются инвариантными или малочувствительными по отношению к обычно встречающимся изменениям и искажениям и обладающими небольшой избыточностью.

Частный случай второго подхода «измерения признаков», при котором эталоны хранятся в виде измеренных признаков и в классификаторе используется специальный критерий классификации (сопоставление).

Признаки определяются разработчиками и должны быть инвариантны к ориентации, размеру и вариациям формы объектов.

Лекция № 17. МЕТОДЫ РАСПОЗНАВАНИЯ ОБРАЗОВ

Различают следующие группы методов распознавания:

Методы функций близости

Методы дискриминантных функций

Статистические методы распознавания.

Лингвистические методы

Эвристические методы.

Первые три группы методов ориентированы на анализ признаков, выражаемых числами либо векторами с числовыми компонентами.

Группа лингвистических методов обеспечивает распознавание образов на основе анализа их структуры, описываемой соответствующими структурными признаками и отношениями между ними.

Группа эвристических методов объединяет характерные приемы и логические процедуры, используемые человеком при распознавании образов.

Методы функций близости

Методы данной группы основаны на использовании функций, оценивающих меру близости между распознаваемым образом с вектором x * = (x * 1 ,….,x * n ), и эталонными образами различных классов, представленными векторами x i = (x i 1 ,…, x i n ), i= 1,…,N , где i – номер класса образов.

Процедура распознавания согласно данному методу состоит в вычислении расстояния между точкой распознаваемого образа и каждой из точек, представляющих эталонный образ, т.е. в вычислении всех значений d i , i= 1,…,N . Образ относится к классу, для которого значение d i имеет наименьшее значение среди всех i= 1,…,N .

Функция, ставящая в соответствие каждой паре векторов x i , x * вещественное число как меру их близости, т.е. определяющая расстояние между ними может быть достаточно произвольной. В математике такую функцию называют метрикой пространства. Она должна удовлетворять следующим аксиомам:

r (x,y )= r (y,x );

r (x,y ) > 0, если x не равен y и r (x,y )=0 если x=y ;

r (x,y ) <= r (x,z )+ r (z,y )

Перечисленным аксиомам удовлетворяют, в частности, следующие функции

a i = 1/2 , j =1,2,…n .

b i =sum, j =1,2,…n .

c i =max abs (x i x j * ), j =1,2,…n .

Первая из них называется евклидовой нормой векторного пространства. Соответственно пространства, в которых в качестве метрики используется указанная функция называется Евклидовым пространством.

Часто в качестве функции близости выбирают среднеквадратическую разность координат распознаваемого образа x * и эталона x i , т.е. функцию

d i = (1/n ) sum(x i j x j * ) 2 , j =1,2,…n .

Величина d i геометрически интерпретируется как квадрат расстояния между точками в пространстве признаков, отнесенный к размерности пространства.

Часто оказывается, что разные признаки неодинаково важны при распознавании. С целью учета данного обстоятельства при вычислении функций близости разности координат, соответствующие более важным признакам умножают на большие коэффициенты, а менее важным – на меньшие.

В таком случае d i = (1/n ) sum w j (x i j x j * ) 2 , j =1,2,…n ,

где w j – весовые коэффициенты.

Введение весовых коэффициентов эквивалентно масштабированию осей пространства признаков и, соответственно растяжению либо сжатию пространства в отдельных направлениях.

Указанные деформации пространства признаков преследуют цель такого размещения точек эталонных образов, которое соответствует наиболее надежному распознаванию в условиях значительного разброса образов каждого класса в окрестности точки эталонного образа.

Группы близких друг другу точек образов (скопления образов) в пространстве признаков называют кластерами, а задачу выделения таких групп – задачей кластеризации.

Задачу выявления кластеров относят к задачам распознавания образов без учителя, т.е. к задачам распознавания в условиях отсутствия примера правильного распознавания.

Методы дискриминантных функций

Идея методов данной группы состоит в построении функций, определяющих в пространстве образов границы, разделяющие пространство на области, соответствующие классам образов. Простейшими и наиболее часто используемыми функциями такого рода являются функции, линейно зависящие от значений признаков. Им в пространстве признаков соответствуют разделяющие поверхности в виде гиперплоскостей. В случае двумерного пространства признаков в качестве разделяющей функции выступает прямая линия.

Общий вид линейной решающей функции задается формулой

d (x )=w 1 x 1 + w 2 x 2 +…+ w n x n + w n +1 = Wx +w n

где x - вектор образа, w= ( w 1 , w 2 ,…w n ) – вектор весовых коэффициентов.

В случае разбиения на два класса X 1 и X 2 дискриминантная функция d (x) позволяет осуществить распознавание в соответствии с правилом:

x принадлежит X 1 , если d (x )>0;

x принадлежит X 2 , если d (x )<0.

Если d (x )=0, то имеет место случай неопределенности.

В случае разбиения на несколько классов вводится несколько функций. При этом каждому классу образов ставится в соответствие определенная комбинация знаков дискриминационных функций.

Например, если введены три дискриминантные функции, то возможен следующий вариант выделения классов образов:

x принадлежит X 1 , если d 1 (x )>0, d 2 (x )<0, d 3 (x )<0;

x принадлежит X 2 , если d (x )<0, d 2 (x )>0, d 3 (x )<0;

x принадлежит X 3 , если d (x )<0, d 2 (x )<0, d 3 (x )>0.

При этом считается, что для других комбинаций значений d 1 (x ), d 2 (x ), d 3 (x ) имеет место случай неопределенности.

Разновидностью метода дискриминантных функций является метод решающих функций. В нем при наличии m классов предполагается существование m функций d i (x ), называемых решающими, таких, что если x принадлежит X i , то d i (x ) > d j (x ) для всех j не равных i ,т.е. решающая функция d i (x ) имеет максимальное значение среди всех функций d j (x ), j =1,...,n ..

Иллюстрацией такого метода может служить классификатор, основанный на оценке минимума евклидова расстояния в пространстве признаков между точкой образа и эталоном. Покажем это.

Евклидово расстояние между вектором признаков распознаваемого образа x и вектором эталонного образа определяется формулой ||x i x || = 1/2 , j =1,2,…n .

Вектор x будет отнесен к классу i , для которого значение ||x i x * || минимально.

Вместо расстояния можно сравнивать квадрат расстояния, т.е.

||x i x || 2 = (x i x )( x i x ) т = x x - 2x x i + x i x i

Поскольку величина x x одинакова для всех i , минимум функции ||x i x || 2 будет совпадать с максимумом решающей функции

d i (x ) = 2x x i - x i x i .

то есть x принадлежит X i , если d i (x ) > d j (x ) для всех j не равных i .

Т.о. машина, классифицирующая по минимуму расстояния, основывается на линейных решающих функциях. Общая структура такой машины, использует решающие функции вида

d i (x )=w i 1 x 1 + w i 2 x 2 +…+ w in x n + w i n +1

Она может быть наглядно представлена соответствующей структурной схемой.

Для машины, осуществляющей классификацию по минимуму расстояния имеют место равенства: w ij = -2x i j , w i n +1 = x i x i .

Эквивалентное распознавание методом дискриминантных функций может быть осуществлено, если определить дискриминантные функции как разности d ij (x )= d i (x )‑ d j (x ).

Достоинством метода дискриминантных функций является простая структура распознающей машины, а также возможность ее реализации преимущественно посредством преимущественно линейных решающих блоков.

Еще одним важным достоинством метода дискриминаннтных функций является возможность автоматического обучения машины правильному распознаванию по заданной (обучающей) выборке образов.

При этом алгоритм автоматического обучения оказывается весьма простым в сравнении с другими методами распознавания.

В силу указанных причин метод дискриминантных функций завоевал широкую популярность весьма часто используется на практике.

Процедуры самообученя распознаванию образов

Рассмотрим методы построения дискриминантной функции по заданной (обучающей) выборке применительно к задаче о разделении образов на два класса. Если заданы два множества образов, принадлежащих соответственно классам А и В, то решение задачи построения линейной дискриминантной функции ищется в виде вектора весовых коэффициентов W =(w 1 ,w 2 ,...,w n ,w n +1), обладающего тем свойством, что для любого образа выполняются условия

x принадлежит классу A, если >0, j =1,2,…n .

x принадлежит классу B, если <0, j =1,2,…n .

Если обучающую выборку составляют N образов обоих классов, задача сводится к отысканию вектора w, обеспечивающего справедливость системы неравенств Если обучающую выборку составляют N образов обоих классов, задача сводится к отысканию вектора w , обеспечивающего справедливость системы неравенств

x 1 1 w i +x 21 w 2 +...+x n 1 w n +w n +1 >0;

x 1 2 w i +x 22 w 2 +...+x n 2 w n +w n +1 <0;

x 1 i w i +x 2i w 2 +...+x ni w n +w n +1 >0;

................................................

x 1 N w i +x 2N w 2 +...+x nN w n +w n + 1>0;

здесь x i =(x i 1 ,x i 2 ,...,x i n ,x i n+ 1 ) - вектор значений признаков образа из обучающей выборки, знак > соответствует векторам образов x , принадлежащих классу A, а знак < - векторам x , принадлежащих классу B.

Искомый вектор w существует, если классы A и B разделимы и не существует в противном случае. Значения компонент вектора w могут быть найдены либо предварительно, на этапе, предшествующем аппаратной реализации СРО, либо непосредственно самой СРО в процессе ее функционирования. Последний из указанных подходов обеспечивает большую гибкость и автономность СРО. Рассмотрим его на примере устройства, называемого перцентроном. изобретенного в 1957 году американским ученым Розенблатом. Схематичное представление перцентрона, обеспечивающего отнесение образа к одному из двух классов, представлено на следующем рисунке.

Сетчатка S Сетчатка A Сетчатка R

о о x 1

о о x 2

о о x 3

о (sum)-------> R (реакция)

о о x i

о о x n

о о x n +1

Устройство состоит из сетчатки сенсорных элементов S , которые случайным образом соединены с ассоциативными элементами сетчатки A . Каждый элемент второй сетчатки воспроизводит выходной сигнал только в том случае, если достаточное число сенсорных элементов, соединенных с его входом, находятся в возбужденном состоянии. Реакция всей системы R пропорциональна сумме взятых с определенными весами реакций элементов ассоциативной сетчатки.

Обозначив через x i реакцию i -го ассоциативного элемента и через w i - весовой коэффициент реакции i -го ассоциативного элемента, реакцию системы можно записать как R =sum(w j x j ), j =1,..,n . Если R >0, то предъявленный системе образ принадлежит классу A, а если R <0, то образ относится к классу B. Описание этой процедуры классификации соответствует рассмотренным нами раньше принципам классификации, и, очевидно, перцентронная модель распознавания образов представляет собой, за исключением сенсорной сетчатки, реализацию линейной дискриминантной функции. Принятый в перцентроне принцип формирования значений x 1 , x 2 ,...,x n соответствует некоторому алгоритму формирования признаков на основе сигналов первичных датчиков.

В общем случае может быть несколько элементов R , формирующих реакцию перцептрона. В таком случае говорят о присутствии в перцептроне сетчатки R реагирующих элементов.

Схему перцентрона можно распространить на случай, когда число классов более двух, путем увеличения числа элементов сетчатки R до числа различаемых классов и введение блока определения максимальной реакции в соответствии со схемой, представленной на выше приведенном рисунке. При этом образ причисляется к классу с номером i , если R i >R j , для всех j .

Процесс обучения перцентрона состоит в подборе значений весовых коэффициентов w j так, чтобы выходной сигнал соответствовал тому классу, которому принадлежит распознаваемый образ.

Рассмотрим алгоритм действия перцентрона на примере распознавания объектов двух классов: A и B. Объектам класса A должно соответствовать значение R = +1, а классу B - значение R = -1.

Алгоритм обучения состоит в следующем.

Если очередной образ x принадлежит классу A, но R <0 (имеет место ошибка распознавания), тогда коэффициенты w j c индексами, которым соответствуют значения x j >0, увеличивают на некоторую величину dw , а остальные коэффициенты w j уменьшают на dw . При этом значение реакции R получает приращение в сторону ее положительных значений, соответствующих правильной классификации.

Если x принадлежит классу B, но R >0 (имеет место ошибка распознавания), то коэффициенты w j с индексами, которым соответствуют x j <0, увеличивают на dw , а остальные коэффициенты w j уменьшают на ту же величину. При этом значение реакции R получает приращение в сторону отрицательных значений, соответствующих правильной классификации.

Алгоритм таким образом вносит изменение в вектор весов w в том и только в том случае, если образ, предъявляемый на k -ом шаге обучения, был при выполнении этого шага неправильно классифицирован, и оставляет вектор весов w без изменений в случае правильной классификации. Доказательство сходимости данного алгоритма представлено в работе [Ту, Гонсалес]. Такое обучение в конечном итоге (при надлежащем выборе dw и линейной разделимости классов образов) приводит к получению вектора w , обеспечивающего правильную классификацию.

Статистические методы распознавания.

Статистические методы основываются на минимизации вероятности ошибки классификации. Вероятность P неправильной классификации поступившего на распознавание образа, описываемого вектором признаков x , определяется формулой

P = sum[p (i )·prob(D (x )+i | x классу i )]

где m - число классов,

p (i ) = prob (x принадлежит классу i ) - априорная вероятность принадлежности произвольного образа x к i -му классу (частота появления образов i -го класса),

D (x ) - функция, принимающая классификационное решение (вектору признаков x ставит в соответствие номер класса i из множества {1,2,...,m }),

prob(D (x ) не равно i | x принадлежит классу i ) - вероятность события "D (x ) не равно i " при выполнении условия принадлежности x классу i , т.е. вероятность вынесения ошибочного решения функцией D (x ) для данного значения x , принадлежащего i -му классу.

Можно показать, что вероятность неправильной классификации достигает минимума, если D (x )=i в том и только в том случае, если p (x |i p (i )>p (x|j p (j ), для всех i+j , где p (x|i ) - плотность распределения образов i -го класса в пространстве признаков.

Согласно приведенному правилу точка x относится к тому классу, которому соответствует максимальное значение p (i ) p (x|i ), т.е. произведение априорной вероятности (частоты) появления образов i -го класса и плотности распределения образов i -го класса в пространстве признаков. Представленное правило классификации называется байесовским, т.к. оно следует из известной в теории вероятности формулы Байеса.

Пример. Пусть необходимо осуществить распознавание дискретных сигналов на выходе информационного канала, подверженного воздействию шума.

Каждый входной сигнал представляет собой 0 или 1. В результате передачи сигнала на выходе канала появляется величина x , на которую налагается Гауссовский шум с нулевым средним значением и дисперсией б.

Воспользуемся для синтеза классификатора, осуществляющего распознавание сигналов, байесовским правилом классификации.

В класс №1 объединим сигналы, представляющие единицы, в класс №2 - сигналы, представляющие нули. Пусть заранее известно, что в среднем из каждой 1000 сигналов a сигналов представляют собой единицы и b сигналов - нули. Тогда значения априорных вероятностей появления сигналов 1-го и 2-го классов (единиц и нулей), соответственно можно принять равными

p(1)=a/1000, p(2)=b/1000.

Т.к. шум является гауссовским, т.е. подчиняется нормальному (гауссовскому) закону распределения, то плотность распределения образов первого класса в зависимости от значения x , или, что тоже самое, вероятность получения на выходе величины x при подаче на входе сигнала 1 определяется выражением

p (x ¦1) =(2piб) -1/2 exp(-(x -1) 2 /(2б 2)),

а плотность распределения в зависимости от значения x образов второго класса, т.е. вероятность получения на выходе величины x при подаче на входе сигнала 0 определяется выражением

p (x ¦2)= (2piб) -1/2 exp(-x 2 /(2б 2)),

Применение байесовского решающего правила приводит к выводу, что передан сигнал класса 2, т.е. передан ноль, если

p (2) p (x ¦2) > p (1) p (x ¦1)

или, более конкретно, если

b exp(-x 2 /(2б 2)) > a exp(-(x -1) 2 /(2б 2)),

Поделив левую часть неравенства на правую, получим

(b /a ) exp((1-2 x )/(2б 2)) >1,

откуда после логарифмирования находим

1-2x > 2б 2 ln(a/b)

x < 0.5 - б 2 ln(a/b)

Из полученного неравенства следует, что при a=b , т.е. при одинаковых априорных вероятностях появления сигналов 0 и 1, образу присваивается значение 0 когда x <0.5, а значение 1, когда x >0.5.

Если заранее известно, что один из сигналов появляется чаще, а другой реже, т.е. в случае неодинаковых значений a и b , порог срабатывания классификатора смещается в ту или другую сторону.

Так при a/b =2.71 (что соответствует в 2.71 раза более частой передаче единиц) и б 2 =0.1, образу присваивается значение 0, если x <0.4, и значение 1, если x >0.4. Если информация об априорных вероятностях распределения отсутствует, то могут быть использованы статистические методы распознавания, в основу которых положены иные, отличные от байесовского, правила классификации.

Однако, на практике наиболее распространены методы, основанные на правилах Байеса в силу их большей эффективности, а также в связи с тем обстоятельством, что в большинстве задач распознавания образов оказывается возможным задать априорные вероятности появления образов каждого класса.

Лингвистические методы распознавания образов.

Лингвистические методы распознавания образов основываются на анализе описания идеализированного изображения, представленного в виде графа или цепочки символов, являющейся фразой или предложением некоторого языка.

Рассмотрим идеализированные изображения букв, полученные в результате первого этапа лингвистического распознавания, описанного выше. Эти идеализированные изображения можно задать описаниями графов, представленных, например, в виде матриц связей, как это было сделано в рассмотренном выше примере. Это же описание можно представить фразой формального языка (выражением).

Пример. Пусть заданы три изображения буквы А, полученные в результате предварительной обработки изображений. Обозначим эти изображения идентификаторами А1, А2 и А3.

Для лингвистического описания представленных образов воспользуемся языком PDL (Picture Description Language). Словарь языка PDL включает следующие символы:

1. Имена простейших изображений (примитивов). Применительно к рассматриваемому случаю примитивы и соответствующие им имена следующие.

Изображения в виде линии, направленной:

вверх и влево (leF t), на север(north)), вверх и вправо (right), на восток(east)).

Имена: L, N, R, E .

2. Символы бинарных операций. {+,*,-} Их смысл соответствует последовательному соединению примитивов (+), соединению начал и окончаний примитивов (*), соединению только окончаний примитивов (-).

3. Правую и левую скобки. {(,)} Скобки позволяют определять последовательность выполненияопераций в выражении.

Рассматриваемые изображения А1, А2 и А3 описываются на языке PDL соответственно следующими выражениями.

T(1)=R+((R-(L+N))*E-L

T(2)=(R+N)+((N+R)-L)*E-L

T(3)=(N+R)+(R-L)*E-(L+N)

После того как лингвистическое описание изображения построено, необходимо с помощью некоторой распознающей процедуры проанализировать, принадлежит или нет данное изображение к интересующему нас классу (классу букв А), т.е. обладает или нет это изображение некоторой структурой. Для этого прежде всего необходимо описать класс изображений, имеющих интересующую нас структуру.

Очевидно, буква А всегда содержит следующие структурные элементы: левую "ножку", правую "ножку" и головную часть. Назовем эти элементы соответственно STL, STR, TR.

Тогда на языке PDL класс символов А - SIMB A описывается выражением

SIMB A = STL + TR - STR

Левая "ножка" STL всегда есть цепочка элементов R и N, что можно записать так

STL ‑> R ¦ N ¦ (STL + R)¦(STL + N)

(STL есть символ R или N, или цепочка, полученная добавлением кисходной цепочке STL символов R или N)

Правая "ножка" STR всегда есть цепочка элементов L и N, что можно записать так, т.е.

STR ‑> L¦N¦ (STR + L)¦(STR + N)

Головная часть буквы - TR представляет собой замкнутый контур, составленный из элемента E и цепочек типа STL и STR.

На языке PDLструктура TR описывается выражением

TR ‑> (STL - STR) * E

Окончательно получим следующее описание класса букв А:

SIMB A ‑> (STL + TR - STR),

STL ‑> R¦N¦ (STL + R)¦(STL + N)

STR ‑> L¦N¦ (STR + L)¦(STR + N)

TR ‑> (STL - STR) * E

Процедура распознавания в данном случае может быть реализована следующим образом.

1. Выражение, соответствующее образу, сравнивается с эталоннойструктурой STL + TR - STR.

2. Каждому элементу структуры STL, TR, STR, если это возможно, т.е. если описание изображения сравнимо с эталоном, ставится в соответствиенекоторое подвыражение из выражения T(А). Например,

для А1: STL=R, STR=L, TR=(R-(L+N))*E

для А2: STL = R + N, STR = L, TR = ((N + R) - L) * E

для А3: STL = N + R, STR = L + N, TR = (R - L) * E 3.

Выражения STL, STR, TR сравниваются с соответствующими им эталонными структурами.

4. Если структура каждого выражения STL, STR, TR соответствует эталонной, делается вывод о принадлежности образа к классу букв А. Если на каком-либо из этапов 2, 3, 4 обнаруживается несоответствие структуры анализируемого выражения эталону, делается вывод о непринадлежности образа классу SIMB A. Сопоставление структур выражений может проводиться с помощью алгоритмических языков LISP, PLANER, PROLOG и других подобных им языков искусственного интеллекта.

В рассматриваемом примере все цепочки STL составлены из символов N и R, а цепочки STR из символов L и N, что соответствует заданной структуре этих цепочек. Структура TR в рассматриваемых образах также соответствует эталонной, т.к. состоит из "разности" цепочек типа STL, STR, "умноженной" на символ E.

Т.о., приходим к выводу о принадлежности рассматриваемых образов классу SIMB A.


Синтез нечеткого регулятора электропривода постоянного тока в среде «MatLab»

Синтез нечеткого регулятора с одним входом и выходом.

Проблема состоит в том, чтобы заставить привод точно следить за различными входными сигналами. Выработка управляющего воздействия осуществляется нечетким регулятором, в котором структурно можно выделить следующие функциональные блоки: фаззификатор, блок правил и дефаззификатор.

Рис.4 Обобщенная функциональная схема системы с двумя лингвистическими переменными.

Рис.5 Принципиальная схема нечеткого регулятора с двумя лингвистическими переменными.

Алгоритм нечеткого управления в общем случае представляет собой преобразование входных переменных нечеткого регулятора в его выходные переменные с помощью следующих взаимосвязанных процедур:

1. преобразование входных физических переменных, получаемых от измерительных датчиков с объекта управления во входные лингвистические переменные нечеткого регулятора;

2. обработка логических высказываний, называемых лингвистическими правилами, относительно входных и выходных лингвистических переменных регулятора;

3. преобразование выходных лингвистических переменных нечеткого регулятора в физические управляющие переменные.

Рассмотрим сначала самый простой случай, когда для управления следящим электроприводом вводятся всего две лингвистические переменные:

«угол» - входная переменная;

«управляющее воздействие» - выходная переменная.

Синтез регулятора будем осуществлять в среде «MatLab» с помощью тулбокса «Fuzzy Logic». Он позволяет создавать системы нечеткого логического вывода и нечеткой классификации в рамках среды MatLab, с возможностью их интегрирования в Simulink. Базовым понятием Fuzzy Logic Toolbox является FIS-структура - система нечеткого вывода (Fuzzy Inference System). FIS-структура содержит все необходимые данные для реализации функционального отображения “входы-выходы” на основе нечеткого логического вывода согласно схеме, приведенной на рис. 6.


Рисунок 6. Нечеткий логический вывод.

X - входной четкий вектор; - вектор нечетких множеств, соответствующий входному вектору X;
- результат логического вывода в виде вектора нечетких множеств;Y - выходной четкий вектор.

Модуль fuzzy позволяет строить нечеткие системы двух типов - Мамдани и Сугэно. В системах типа Мамдани база знаний состоит из правил вида “Если x 1 =низкий и x 2 =средний, то y=высокий” . В системах типа Сугэно база знаний состоит из правил вида “Если x 1 =низкий и x 2 =средний, то y=a 0 +a 1 x 1 +a 2 x 2 " . Таким образом, основное отличие между системами Мамдани и Сугэно заключается в разных способах задания значений выходной переменной в правилах, образующих базу знаний. В системах типа Мамдани значения выходной переменной задаются нечеткими термами, в системах типа Сугэно - как линейная комбинация входных переменных. В нашем случаем будем использовать систему Сугэно, т.к. она лучше поддается оптимизации.

Для управления следящим электроприводом, вводятся две лингвистические переменные: «ошибка» (по положению) и «управляющее воздействие». Первая из них является входной, вторая – выходная. Определим терм-множество для указанный переменных.

Основные компоненты нечеткого логического вывода. Фаззификатор.

Для каждой лингвистической переменной определим базовое терм-множество вида, включающее в себя нечеткие множества, которые можно обозначить: отрицательная высокая, отрицателная низкая, нуль, положительная низкая, положительная высокая.

Прежде всего субъективно определим что подразумевается под термами «большая ошибка», «малая ошибка» и т.д., определяя функции принадлежности для соответствующих нечетких множеств. Здесь пока можно руководствоваться только требуемой точностью, известными параметрами для класса входных сигналов и здравым смыслом. Никакого жесткого алгоритма для выбора параметров функций принадлежности пока никому предложить не удалось. В нашем случае лингвистическая переменная «ошибка» будет выглядеть следующим образом.

Рис.7. Лингвистическая переменная «ошибка».

Лингвистическую переменную «управление» удобнее представить в виде таблицы:

Таблица 1

Блок правил .

Рассмотрим последовательность определения нескольких правил, которые описывают некоторые ситуации:

Предположим, например, что выходной угол равен входному сигналу (т.е. ошибка - нуль). Очевидно, что это желаемая ситуация, и следовательно мы не должны ничего делать (управляющее воздействие - нуль).

Теперь рассмотрим другой случай: ошибка по положению сильно больше нуля. Естественно мы должны её компенсировать, формируя большой положительный сигнал управления.

Т.о. составлены два правила, которые могут быть формально определены так:

если ошибка = нуль, то управляющее воздействие = нуль.

если ошибка = большая положительная, то управляющее воздействие = большое положительное.

Рис.8. Формирование управления при малой положительной ошибке по положению.

Рис.9. Формирование управления при нулевой ошибке по положению.

Ниже в таблице приведены все правила, соответствующие всем ситуациям для этого простого случая.

Таблица 2

Всего для нечеткого регулятора, имеющего n входов и 1 выход может быть определено правил управления, где – количество нечетких множеств для i-го входа, но для нормального функционирования регулятора не обязательно использовать все возможные правила, а можно обойтись и меньшим их числом. В нашем случае для формирования нечеткого сигнала управления используются все 5 возможных правил.

Дефаззификатор.

Таким образом, результирующее воздействие U будет определяться соответственно выполнению какого-либо правила. Если возникает ситуация, когда выполняются сразу несколько правил, то результирующее воздействие U находится по следующей зависимости:

, где n-число сработавших правил (дефаззификация методом центра области), u n – физическое значение управляющего сигнала, сответствующее каждому из нечетких множеств UBO , UMo , U Z , UMp , UB P . m Un(u) – степень принадлежности управляющего сигнала u к соответствующему нечеткому множеству Un={UBO , UMo , U Z , UMp , UB P }. Существуют также и другие методы дефаззификации, когда выходная лингвистическая переменная пропорциональна самомому «сильному» или «слабому» правилу.

Промоделируем процесс управления электроприводом с помощью вышеописанного нечеткого регулятора.

Рис.10. Структурная схема системы в среде Matlab .

Рис.11. Структурная схема нечеткого регулятора в среде Matlab .

Рис.12. Переходный процесс при единичном ступенчатом воздействии.

Рис. 13. Переходный процесс при гармоническом входном воздействии для модели с нечетким регулятором, содержащим одну входную лингвистическую переменную.

Анализ характеристик привода с синтезированным алгоритмом управления показывает, что они далеки от оптимальных и хуже, чем при синтезе управления другими методами (слишком большое время регулирования при единичном ступенчатом воздействии и ошибка при гармоническом). Объясняется это тем, что параметры функций принадлежности выбирались достаточно произвольно, а в качестве входов регулятора использовалась только величина ошибки по положению. Естественно ни о какой оптимальности полученного регулятора не может идти и речи. Поэтому актуальной становится задача оптимизации нечеткого регулятора, с целью достижения им максимально возможных показателей качества управления. Т.е. стоит задача оптимизации целевой функции f(a 1 ,a 2 …a n), где a 1 ,a 2 …a n – коэффициенты, определяющие вид и характеристики нечеткого регулятора. Для оптимизации нечеткого регулятора воспользуемся блоком ANFIS из среды Matlab. Также одним из способов улучшения характеристик регулятора может являться увеличение числа его входов. Это сделает регулятор более гибким и улучшит его характеристики. Добавим еще одну входную лингвистическую переменную – скорость изменения входного сигнала (его производную). Соответственно возрастет и число правил. Тогда принципиальная схема регулятора примет вид:

Рис.14 Принципиальная схема нечеткого регулятора с тремя лингвистическими переменными.

Пусть - значение скорости входного сигнала. Базовое терм-множество Тn определим в виде:

Тn={”отрицательная (ВО)”, “нулевая (Z)”, ”положительная (ВР)”}.

Расположение функций принадлежности для всех лингвистических переменных показано на рисунке.

Рис.15. Функции принадлежности лингвистической переменной «ошибка».

Рис.16. Функции принадлежности лингвистической переменной «скорость входного сигнала» .

В связи с добавлением еще одной лингвистической переменной, количество правил возрастет до 3x5=15. Принцип их составления полностью аналогичен рассмотренному выше. Все они приведены в следующей таблице:

Таблица 3

Нечеткий сигнал

управления

Ошибка по положению

Скорость

Например, если если ошибка = нуль, а производная входного сигнала = большая положительная, то управляющее воздействие = малое отрицательное.

Рис.17. Формирование управления при трех лингвистических переменных.

В связи с увеличением числа входов и соответственно самих правил, усложнится и структура нечеткого регулятора.

Рис.18. Структурная схема нечеткого регулятора с двумя входами.

Добавить рисунок

Рис.20. Переходный процесс при гармоническом входном воздействии для модели с нечетким регулятором, содержащим две входные лингвистические переменные.

Рис. 21. Сигнал ошибки при гармоническом входном воздействии для модели с нечетким регулятором, содержащим две входные лингвистические переменные.

Промоделируем работу нечеткого регулятора с двумя входами в среде Matlab. Структурная схема модели будет точно такой же, как на рис. 19. Из графика переходного процесса для гармонического входного воздействия можно видеть, что точность системы значительно возросла, но при этом увеличилась её колебательность, особенно в местах, где производная выходной координаты стремится к нулю. Очевидно, что причинами этого, как уже говорилось выше, является неоптимальный выбор параметров функций принадлежности, как для входных, так и для выходных лингвистических переменных. Поэтому оптимизируем нечеткий регулятор с помощью блока ANFISedit в среде Matlab.

Оптимизация нечеткого регулятора.

Рассмотрим использование генетических алгоритмов для оптимизации нечеткого регулятора. Генетические алгоритмы – адаптивные методы поиска, которые в последнее время часто используются для решения задач функциональной оптимизации. Они основаны на подобии генетическим процессам биологических организмов: биологические популяции развиваются в течении нескольких поколений, подчиняясь законам естественного отбора и по принципу "выживает наиболее приспособленный" (survival of the fittest), открытому Чарльзом Дарвином. Подражая этому процессу генетические алгоритмы способны "развивать" решения реальных задач, если те соответствующим образом закодированы.

Генетические алгоритмы работают с совокупностью "особей" - популяцией, каждая из которых представляет возможное решение данной проблемы. Каждая особь оценивается мерой ее "приспособленности" согласно тому, насколько "хорошо" соответствующее ей решение задачи. Наиболее приспособленные особи получают возможность "воспроизводить" потомство с помощью "перекрестного скрещивания" с другими особями популяции. Это приводит к появлению новых особей, которые сочетают в себе некоторые характеристики, наследуемые ими от родителей. Наименее приспособленные особи с меньшей вероятностью смогут воспроизвести потомков, так что те свойства, которыми они обладали, будут постепенно исчезать из популяции.

Так и воспроизводится вся новая популяция допустимых решений, выбирая лучших представителей предыдущего поколения, скрещивая их и получая множество новых особей. Это новое поколение содержит более высокое соотношение характеристик, которыми обладают хорошие члены предыдущего поколения. Таким образом, из поколения в поколение, хорошие характеристики распространяются по всей популяции. В конечном итоге, популяция будет сходиться к оптимальному решению задачи.

Имеются много способов реализации идеи биологической эволюции в рамках генетических алгоритмов. Традиционный, можно представить в виде следующей блок-схемы показанной на рисунке 22, где:

1. Инициализация начальной популяции – генерация заданного числа решений задачи, с которых начинается процесс оптимизации;

2. Применение операторов кроссовера и мутации;

3. Условия останова – обычно процесс оптимизации продолжают до тех пор, пока не будет найдено решение задачи с заданной точностью, или пока не будет выявлено, что процесс сошелся (т.е. не произошло улучшения решения задачи за последние N поколений).

В среде Matlab генетические алгоритмы представлены отдельным тулбоксом, а также пакетом ANFIS. ANFIS - это аббревиатура Adaptive-Network-Based Fuzzy Inference System - адаптивная сеть нечеткого вывода. ANFIS является одним из первых вариантов гибридных нейро-нечетких сетей - нейронной сети прямого распространения сигнала особого типа. Архитектура нейро-нечеткой сети изоморфна нечеткой базе знаний. В нейро-нечетких сетях используются дифференцируемые реализации треугольных норм (умножение и вероятностное ИЛИ), а также гладкие функции принадлежности. Это позволяет применять для настройки нейро-нечетких сетей быстрые и генетические алгоритмы обучения нейронных сетей, основанные на методе обратного распространения ошибки. Ниже описываются архитектура и правила функционирования каждого слоя ANFIS-сети.

ANFIS реализует систему нечеткого вывода Сугено в виде пятислойной нейронной сети прямого распространения сигнала. Назначение слоев следующее: первый слой - термы входных переменных; второй слой - антецеденты (посылки) нечетких правил; третий слой - нормализация степеней выполнения правил; четвертый слой - заключения правил; пятый слой - агрегирование результата, полученного по различным правилам.

Входы сети в отдельный слой не выделяются. На рис.23 изображена ANFIS-сеть с одной входной переменной («ошибка») и пятью нечеткими правилами. Для лингвистической оценки входной переменной «ошибка» используется 5 термов.


Рис.23. Структура ANFIS -сети.

Введем следующие обозначения, необходимые для дальнейшего изложения:

Пусть - входы сети;

y - выход сети;

Нечеткое правило с порядковым номером r;

m - количество правил,;

Нечеткий терм с функцией принадлежности , применяемый для лингвистической оценки переменной в r-ом правиле (,);

Действительные числа в заключении r-го правила (,).

ANFIS-сеть функционирует следующим образом.

Слой 1. Каждый узел первого слоя представляет один терм с колокообразной функцией принадлежности. Входы сети соединены только со своими термами. Количество узлов первого слоя равно сумме мощностей терм-множеств входных переменных. Выходом узла являются степень принадлежности значения входной переменной соответствующему нечеткому терму:

,

где a, b и c - настраиваемые параметры функции принадлежности.

Слой 2. Количество узлов второго слоя равно m. Каждый узел этого слоя соответствует одному нечеткому правилу. Узел второго слоя соединен с теми узлами первого слоя, которые формируют антецеденты соответствующего правила. Следовательно, каждый узел второго слоя может принимать от 1 до n входных сигналов. Выходом узла является степень выполнения правила, которая рассчитывается как произведение входных сигналов. Обозначим выходы узлов этого слоя через , .

Слой 3. Количество узлов третьего слоя также равно m. Каждый узел этого слоя рассчитывает относительную степень выполнения нечеткого правила:

Слой 4. Количество узлов четвертого слоя также равно m. Каждый узел соединен с одним узлом третьего слоя а также со всеми входами сети (на рис. 18 связи с входами не показаны). Узел четвертого слоя рассчитывает вклад одного нечеткого правила в выход сети:

Слой 5. Единственный узел этого слоя суммирует вклады всех правил:

.

Типовые процедуры обучения нейронных сетей могут быть применены для настройки ANFIS-сети так как, в ней использует только дифференцируемые функции. Обычно применяется комбинация градиентного спуска в виде алгоритма обратного распространения ошибки и метода наименьших квадратов. Алгоритм обратного распространения ошибки настраивает параметры антецедентов правил, т.е. функций принадлежности. Методом наименьших квадратов оцениваются коэффициенты заключений правил, так как они линейно связаны с выходом сети. Каждая итерация процедуры настройки выполняется в два этапа. На первом этапе на входы подается обучающая выборка, и по невязке между желаемым и действительным поведением сети итерационным методом наименьших квадратов находятся оптимальные параметры узлов четвертого слоя. На втором этапе остаточная невязка передается с выхода сети на входы, и методом обратного распространения ошибки модифицируются параметры узлов первого слоя. При этом найденные на первом этапе коэффициенты заключений правил не изменяются. Итерационная процедура настройки продолжается пока невязка превышает заранее установленное значение. Для настройки функций принадлежностей кроме метода обратного распространения ошибки могут использоваться и другие алгоритмы оптимизации, например, метод Левенберга-Марквардта.

Рис.24. Рабочая область ANFISedit.

Попробуем теперь оптимизировать нечеткий регулятор для единичного ступенчатого воздействия. Желаемый переходный процесс имеет приблизительно следующий вид:

Рис.25. Желаемый переходный процесс.

Из графика изображенного на рис. следует, что большую часть времени двигатель должен работать на полную мощность, чтобы обеспечить максимальное быстродействие, а при приближении к желаемому значению должен плавно притормаживать. Руководствуясь этими простыми рассуждениями, в качестве обучающей возьмем следующую выборку значений, представленную ниже в виде таблицы:

Таблица 4


Значение ошибки

Значение управления

Значение ошибки

Значение управления

Значение ошибки

Значение управления


Рис.26. Вид обучающей выборки.

Обучение будем проводить на 100 шагах. Этого более чем достаточно для сходимости используемого метода.

Рис.27. Процесс обучения нейросети.

В процессе обучения параметры функций принадлежности формируются таким образом, чтобы при заданной величине ошибки регулятор создавал необходимое управление. На участке между узловыми точками зависимость управления от ошибки является интерполяцией данных таблицы. Метод интерполяции зависит от способа обучения нейросети. Фактически после обучения модель нечеткого регулятора можно представить нелинейной функцией одной переменной, график которой представлен ниже.

Рис.28. График зависимости управления от ошибки поп положению внутри регулятора.

Сохранив найденные параметры функций принадлежности, промоделируем систему с оптимизированным нечетким регулятором.


Рис. 29. Переходный процесс при гармоническом входном воздействии для модели с оптимизированным нечетким регулятором, содержащим одну входную лингвистическую переменную.

Рис.30. Сигнал ошибки при гармоническом входном воздействии для модели с нечетким регулятором, содержащим две входные лингвистические переменные.


Из графиков следует, что оптимизация нечеткого регулятора с помощью обучения нейросети удалась. Значительно снизилась колебательность и величина ошибки. Поэтому использование нейросети является вполне обоснованным для оптимизации регуляторов, принцип действия которых основан на нечеткой логике. Тем не менее, даже оптимизированный регулятор не может удовлетворить предъявленные требования по точности, поэтому целесообразно рассмотреть еще один способ управления, когда нечеткий регулятор управляет не непосредственно объектом, а занимается соединением нескольких законов управления в зависимости от сложившейся ситуации.

Под образом понимается структурированное описание изучаемого объекта или явления, представленное вектором признаков, каждый элемент которого представляет числовое значение одного из признаков, характеризующих соответствующий объект.

Общая структура системы распознавания имеет следующий вид:

Смысл задачи распознавания – установить, обладают ли изучаемые объекты фиксированным конечным набором признаков, позволяющих отнести их к определенному классу. Задачи распознавания имеют следующие характерные черты:

1. Это информационные задачи, состоящие из двух этапов:

a. Приведение исходных данных к виду, удобному для распознавания.

b. Собственно распознавание – указание принадлежности объекта определенному классу.

2. В этих задачах можно вводить понятие аналогии или подобия объектов и формулировать понятие близости объектов в качестве основания для зачисления объектов в один и тот же класс или разные классы.

3. В этих задачах можно оперировать набором прецедентов – примеров, классификация которых известна и которые в виде формализованных описаний могут быть предъявлены алгоритму распознавания для настройки на задачу в процессе обучения.

4. Для этих задач трудно строить формальные теории и применять классические математические методы: часто информация для точной математической модели или выигрыш от использования модели и математических методов несоизмерим с затратами.

5. В этих задачах возможна «плохая информация» - информация с пропусками, разнородная, косвенная, нечеткая, неоднозначная, вероятностная.

Целесообразно выделять следующие типы задач распознавания:

1. Задача распознавания, то есть отнесение предъявленного объекта по его описанию к одному из заданных классов (обучение с учителем).

2. Задача автоматической классификации – разбиение множества объектов (ситуаций) по их описаниям на систему непересекающихся классов (таксономия, кластерный анализ, обучение без учителя).

3. Задача выбора информативного набора признаков при распознавании.

4. Задача приведения исходных данных к виду, удобному для распознавания.

5. Динамическое распознавание и динамическая классификация – задачи 1 и 2 для динамических объектов.

6. Задача прогнозирования – задачи 5, в которых решение должно относиться к некоторому моменту в будущем.

Понятие образа.

Образ, класс – классификационная группировка в системе, объединяющая (выделяющая) определенную группу объектов по некоторому признаку. Образы обладают рядом характерных свойств, проявляющихся в том, что ознакомление с конечным числом явлений из одного и того же множества дает возможность узнавать сколь угодно большое число его представителей.


В качестве образа можно рассматривать и некоторую совокупность состояний объекта управления, причем вся эта совокупность состояний характеризуется тем, что для достижения заданной цели требуется одинаковое воздействие на объект. Образы обладают характерными объективными свойствами в том смысле, что разные люди, обучающиеся на различном материале наблюдений, большей частью одинаково и независимо друг от друга классифицируют одни и те же объекты.

В целом, проблема распознавания образов состоит из двух частей: обучение и распознавание.

Обучение осуществляется путем показа отдельных объектов с указанием их принадлежности тому или другому образу. В результате обучения распознающая система должна приобрести способность реагировать одинаковыми реакциями на все объекты одного образа и различными – на все объекты различных образов.

Очень важно, что процесс обучения должен завершиться только путем показов конечного числа объектов без каких-либо других подсказок. В качестве объектов обучения могут быть либо визуальные изображения, либо различные явления внешнего мира и другие.

За обучением следует процесс распознавания новых объектов, который характеризует действие уже обученной системы. Автоматизация этих процедур и составляет проблему обучения распознаванию образов. В том случае, когда человек сам разгадывает или придумывает, а затем навязывает ЭВМ правила классификации, проблема распознавания решается частично, так как основную и главную часть проблемы (обучение) человек берет на себя.

Проблема обучения распознаванию образов интересна как с прикладной, так и с принципиальной точки зрения. С прикладной точки зрения, решение этой проблемы важно прежде всего потому, что оно открывает возможность автоматизировать многие процессы, которые до сих пор связывали лишь с деятельностью живого мозга. Принципиальное значение проблемы связано с вопросом, что может и что принципиально не может делать ЭВМ.

При решении задач управления методами распознавания образов вместо термина «образ» применяется термин «состояние». Состояние – определенные формы отображения измеряемых текущих (мгновенных) характеристик наблюдаемого объекта, совокупность состояний определяет ситуацию.

Ситуацией принято называть некоторую совокупность состояний сложного объекта, каждое из которых характеризуется одними и теми же или схожими характеристиками объекта. Например, если в качестве объекта наблюдения рассматривается некоторый объект управления, то ситуация объединяет такие состояния этого объекта, в которых следует применять одни и те же управляющие воздействия. Если объектом наблюдения является игра, то ситуация объединяет все состояния игры.

Выбор исходного описания объектов является одной из центральных задач проблемы обучения распознаванию образов. При удачном выборе исходного описания (пространство признаков) задача распознавания может оказаться тривиальной. И наоборот, неудачно выбранное исходное описание может привести либо к очень сложной дальнейшей переработке информации, либо вообще к отсутствию решения.

Геометрический и структурный подходы.

Любое изображение, которое возникает в результате наблюдения какого-либо объекта в процессе обучения или экзамена, можно представить в виде вектора, а значит, и в виде точки некоторого пространства признаков.

Если утверждается, что при показе изображений возможно однозначно отнести их к одному из двух (или нескольких) образов, то тем самым утверждается, что в некотором пространстве существуют две или несколько областей, не имеющих общих точек, и что изображение точки из этих областей. Каждой точки такой области можно приписать наименование, то есть дать название, соответствующее образу.

Проинтерпретируем в терминах геометрической картины процесс обучения распознаванию образов, ограничившись пока случаем распознавания только двух образов. Заранее считается известным лишь то, что требуется разделить две области в некотором пространстве и что показываются точки только их этих областей. Сами эти области заранее не определены, то есть нет каких-либо сведений о расположении их границ или правил определения принадлежности точки к той или иной области.

В ходе обучения предъявляются точки, случайно выбранные из этих областей, и сообщается информация о том, к какой области принадлежат предъявляемые точки. Никакой дополнительной информации об этих областях, то есть о расположении их границ в ходе обучения не сообщается.

Цель обучения состоит либо в построении поверхности, которая разделяла бы не только показанные в процессе обучения точки, но и все остальные точки, принадлежащие этим областям, либо в построении поверхностей, ограничивающих эти области так, чтобы в каждой из них находились только точки одного образа. Иначе говоря, цель обучения состоит в построении таких функций от векторов-изображений, которые были бы, например, положительны на всех точках одного и отрицательны на всех точках другого образа.

В связи с тем, что области не имеют общих точек, всегда существует целое множество таких разделяющих функций, а в результате обучения должна быть построена одна из них. Если предъявляемые изображения принадлежат не двум, а большему числу образов, то задача состоит в построении по показанным в ходе обучения точкам поверхности, разделяющей все области, соответствующие этим образам, друг от друга.

Эта задача может быть решена, например, путем построения функции, принимающей над точками каждой из областей одинаковое значение, а над точками из разных областей значение этой функции должно быть различно.

Может показаться, что знания всего лишь некоторого количества точек из области недостаточно, чтобы отделить всю область. Действительно можно указать бесчисленное количество различных областей, которые содержат эти точки, и как бы ни была построена по ним поверхность, выделяющая область, всегда можно указать другую область, которая пересекает поверхность и вместе с тем содержит показанные точки.

Однако известно, что задача о приближении функции по информации о ней в ограниченном множестве точек является существенно более узкой, чем все множество, на котором функция задана, и является обычной математической задачей об аппроксимации функций. Разумеется, решение таких задач требует введения определенных ограничений на классе рассматриваемых функций, а выбор этих ограничений зависит от характера информации, которую может добавить учитель в процесс обучения.

Одной из таких подсказок является гипотеза о компактности образов.

Наряду с геометрической интерпретацией проблемы обучения распознаванию образов, существует и иной подход, который назван структурным, или лингвистическим. Рассмотрим лингвистический подход на примере распознавания зрительных изображений.

Сначала выделяется набор исходных понятий – типичных фрагментов, встречающихся на изображении, и характеристик взаимного расположения фрагментов (слева, снизу, внутри и т.д.). Эти исходные понятия образуют словарь, позволяющий строить различные логические высказывания, иногда называемые предложениями.

Задача состоит в том, чтобы из большого количества высказываний, которые могли бы быть построены с использованием этих понятий, отобрать наиболее существенные для данного конкретного случая. Далее, просматривая конечное и по возможности небольшое число объектов из каждого образа, нужно построить описание этих образов.

Построенные описания должны быть столь полными, чтобы решить вопрос о том, к какому образу принадлежит данный объект. При реализации лингвистического подхода возникают две задачи: задача построения исходного словаря, то есть набора типичных фрагментов, и задача построения правил описания из элементов заданного словаря.

В рамках лингвистической интерпретации проводится аналогия между структурой изображений и синтаксисом языка. Стремление к этой аналогии было вызвано возможностью использовать аппарат математической лингвистики, то есть методы по своей природе являются синтаксическими. Использование аппарата математической лингвистики для описания структуры изображений можно применять только после того, как произведена сегментация изображений на составные части, то есть выработаны слова для описания типичных фрагментов и методы их поиска.

После предварительной работы, обеспечивающей выделение слов, возникают собственно лингвистические задачи, состоящие из задач автоматического грамматического разбора описаний для распознавания изображений.

Гипотеза компактности.

Если предположить, что в процессе обучения пространство признаков формируется исходя из задуманной классификации, то тогда можно надеяться, что задание пространства признаков само по себе задает свойство, под действием которого образы в этом пространстве легко разделяются. Именно эти надежды по мере развития работ в области распознавания образов стимулировали появление гипотезы компактности, которая гласит: образам соответствуют компактные множества в пространстве признаков.

Под компактным множеством будем понимать некие сгустки точек в пространстве изображений, предполагая, что между этими сгустками существуют разделяющие их разряжения. Однако эту гипотезу не всегда удавалось подтвердить экспериментально. Но те задачи, в рамках которых гипотеза компактности хорошо выполнялась, всегда находили простое решение и наоборот, те задачи, для которых гипотеза не подтверждалась, либо совсем не решались, либо решались с большим трудом и привлечением дополнительной информации.

Сама гипотеза компактности превратилась в признак возможности удовлетворительно решения задач распознавания.

Формулировка гипотеза компактности подводит вплотную к понятию абстрактного образа. Если координаты пространства выбирать случайно, то и изображения в нем будут распределены случайно. Они будут в некоторых частях пространства располагаться более плотно, чем в других.

Назовем некоторое случайно выбранное пространство абстрактным изображением. В этом абстрактном пространстве почти наверняка будут существовать компактные множества точек. Поэтому, в соответствии с гипотезой компактности, множество объектов, которым в абстрактном пространстве соответствуют компактные множества точек, принято называть абстрактными образами заданного пространства.

Обучение и самообучение, адаптация и обучение.

Если бы удалось подметить некое всеобщее свойство, не зависящее ни от природы образов, ни от их изображений, а определяющее лишь способность к разделимости, то наряду с обычной задачей обучения распознаванию с использованием информации о принадлежности каждого объекта из обучающей последовательности тому или иному образу, можно было бы поставить иную классификационную задачу – так называемую задачу обучения без учителя.

Задачу такого рода на описательном уровне можно сформулировать следующим образом: системе одновременно или последовательно предъявляются объекты без каких-либо указаний об их принадлежности к образам. Входное устройство системы отображает множество объектов на множество изображений и, используя некоторое заложенное в нем заранее свойство разделимости образов, производит самостоятельную классификацию этих объектов.

После такого процесса самообучения система должна приобрести способность к распознаванию не только уже знакомых объектов (объектов из обучающей последовательности), но и тех, которые ранее не предъявлялись. Процессом самообучения некоторой системы называется такой процесс, в результате которого эта система без подсказки учителя приобретает способность к выработке одинаковых реакций на изображения объектов одного и того же образа и различных реакций на изображения различных образов.

Роль учителя при этом состоит лишь в подсказке системе некоторого объективного свойства, одинакового для всех образов и определяющего способность к разделению множества объектов на образы.

Оказывается, таким объективным свойством является свойство компактности образов. Взаимное расположение точек в выбранном пространстве уже содержит информацию о том, как следует разделить множество точек. Эта информация и определяет то свойство разделимости образов, которое оказывается достаточным для самообучения системы распознаванию образов.

Большинство известных алгоритмов самообучения способны выделять только абстрактные образы, то есть компактные множества в заданных пространствах. Различие между ними состоит в формализации понятия компактности. Однако это не снижает, а иногда и повышает ценность алгоритмов самообучения, так как часто сами образы заранее никем не определены, а задача состоит в том, чтобы определить, какие подмножества изображений в заданном пространстве представляют собой образы.

Примером такой постановки задачи являются социологические исследования, когда по набору вопросов выделяются группы людей. В таком понимании задачи алгоритмы самообучения генерируют заранее неизвестную информацию о существовании в заданном пространстве образов, о которых ранее никто не имел никакого представления.

Кроме того, результат самообучения характеризует пригодность выбранного пространства для конкретной задачи обучения распознаванию. Если абстрактные образы, выделяемые в пространстве самообучения, совпадают с реальными, то пространство выбрано удачно. Чем сильнее абстрактные образы отличаются от реальных, тем неудобнее выбранное пространство для конкретной задачи.

Обучением обычно называют процесс выработки в некоторой системе той или иной реакции на группы внешних идентичных сигналов путем многократного воздействия на систему внешней корректировки. Механизм генерации этой корректировки практически полностью определяет алгоритм обучения.

Самообучение отличается от обучения тем, что здесь дополнительная информация о верности реакции системе не сообщается.

Адаптация – процесс изменения параметров и структуры системы, а возможно, и управляющих воздействий, на основе текущей информации с целью достижения определенного состояния системы при начальной неопределенности и изменяющихся условиях работы.

Обучение – процесс, в результате которого система постепенно приобретает способность отвечать нужными реакциями на определенные совокупности внешних воздействий, а адаптация – подстройка параметров и структуры системы с целью достижения требуемого качества управления в условиях непрерывных изменений внешних условий.


Системы распознавания речи.

Речь выступает в роли основного средства коммуникации между людьми и поэтому речевое общение считается одним из важнейших компонентов системы искусственного интеллекта. Распознавание речи представляет собой процесс преобразования акустического сигнала, формируемого на выходе микрофона или телефона, в последовательность слов.

Более сложной задачей является задача понимания речи, которая сопряжена с выявлением смысла акустического сигнала. В этом случае выход подсистемы распознавания речи служит входом подсистемы понимания высказываний. Автоматическое распознавание речи (системы АРР) является одним из направлений технологий обработки естественного языка.

Автоматическое распознавание речи применяется при автоматизации ввода текстов в ЭВМ, при формировании устных запросов к базам данных или информационно-поисковым системам при формировании устных команд различным интеллектуальным устройствам.

Основные понятия систем распознавания речи.

Системы распознавания речи характеризуются многими параметрами.

Одним из основных параметров является ошибка распознавания слов (ОРС). Этот параметр представляет собой отношение количества нераспознанных слов к общему количеству произнесенных слов.

Другими параметрами, характеризующими системы автоматического распознавания речи, являются:

1) размер словаря,

2) режим речи,

3) стиль речи,

4) предметная область,

5) дикторозависимость,

6) уровень акустических шумов,

7) качество входного канала.

В зависимости от размера словаря системы АРР подразделяются на три группы:

С малым размером словаря (до 100 слов),

Со средним размером словаря (от 100 слов до нескольких тысяч слов),

С большим размером словаря (более 10 000 слов).

Режим речи характеризует способ произнесения слов и фраз. Выделяют системы распознавания слитной речи и системы, позволяющие распознавать только изолированные слова речи. В режиме распознавания изолированных слов требуется, чтобы диктор делал краткие паузы между словами.

По стилю речи системы АРР подразделяются на две группы: системы детерминированной речи и системы спонтанной речи.

В системах распознавания детерминированной речи диктор воспроизводит речь, следуя грамматическим правилам языка. Спонтанная речь характеризуется нарушениями грамматических правил и ее сложнее распознавать.

В зависимости от предметной области выделяют системы АРР, ориентированные на применение в узкоспециальных областях (например, доступ к базам данных) и системы АРР с неограниченной областью применения. Последние требуют наличия большого объема словаря и должны обеспечивать распознавание спонтанной речи.

Многие системы автоматического распознавания речи являются дикторозависимыми. Это предполагает предварительную настройку системы на особенности произношения конкретного диктора.

Сложность решения задачи распознавания речи объясняется большой изменчивостью акустических сигналов. Эта изменчивость объясняется несколькими причинами:

Во-первых, различной реализацией фонем – основных единиц звукового строя языка. Изменчивость реализации фонем вызвана влиянием соседних звуков в потоке речи. Оттенки реализации фонем, обусловленные звуковым окружением, называют аллофонами.

Во-вторых, положением и характеристиками акустических приемников.

В-третьих, изменениями параметрами речи одного и того же диктора, которые обусловлены различным эмоциональным состоянием диктора, темпом его речи.

На рисунке представлены основные компоненты системы распознавания речи:

Оцифрованный речевой сигнал поступает на блок предварительной обработки, где осуществляется выделение признаков, необходимых для распознавания звуков. Распознавание звуков часто осуществляется с помощью моделей искусственных нейронных сетей. Выделенные звуковые единицы используют в дальнейшем для поиска последовательности слов, в наибольшей степени соответствующей входному речевому сигналу.

Поиск последовательности слов выполняется с помощью акустической, лексической и языковой моделей. Параметры моделей определяют по обучающим данным на основе соответствующих алгоритмов обучения.

Синтез речи по тексту. Основные понятия

Во многих случаях создание систем искусственного интеллекта с элементами ея-общения требуют вывода сообщений в речевой форме. На рисунке представлена структурная схема интеллектуальной вопросно-ответной системы с речевым интерфейсом:

Рисунок 1.

Кусок лекций взять у Олега

Рассмотрим особенности эмпирического подхода на примере распознавания частей речи. Задача состоит в присвоении словам предложения меток: существительное, глагол, предлог, прилагательное и тому подобное. Кроме этого, необходимо определять некоторые дополнительные признаки существительных и глаголов. Например, для существительного – число, а для глагола – форму. Формализуем задачу.

Представим предложение в виде последовательности слов: W=w1 w2…wn, где wn – случайные переменные, каждая из которых получает одно из возможных значений, принадлежащих словарю языка. Последовательность меток, назначаемых словам предложения, представим последовательностью X=x1 x2 … xn, где xn – случайные переменные, значения которых определены на множестве возможных меток.

Тогда задача распознавания частей речи состоит в поиске наиболее вероятной последовательности меток x1, x2, …, xn по заданной последовательности слов w1, w2, …, wn. Иными словами, необходимо найти такую последовательность меток X*=x1 x2 … xn, которая обеспечивает максимум условной вероятности P(x1, x2, …, xn| w1 w2.. wn).

Перепишем условную вероятность P(X| W) в следующем виде P(X| W)=P(X,W) / P(W). Так как требуется найти максимум условной вероятности P(X,W) по переменной X, получим X*=arg x max P(X,W). Совместную вероятность P(X,W) можно записать в виде произведения условных вероятностей: P(X,W)=произведение по и-1 до н от P(x i |x1,…,x i -1 , w1,…,w i -1) P(w i |x1,…,x i -1 , w1,…,w i -1). Непосредственный поиск максимума данного выражения представляет собой сложную задачу, так как при больших значениях n поисковое пространство становится очень большим. Поэтому вероятности, которые записаны в этом произведении, аппроксимируют более простыми условными вероятностями: P(x i |x i -1) P(w i |w i -1). В этом случае полагают, что значение метки x i связано только с предыдущей меткой x i -1 и не зависит от более ранних меток, а также что вероятность слова w i определяется только текущей меткой x i . Указанные предположения называют марковскими, а для решения задачи привлекают теорию марковских моделей. С учетом марковских предположений можно записать:

X*= arg x1, …, xn max П i =1 n P(x i |x i -1) P(wi|wi-1)

Где условные вероятности оцениваются на множестве обучающих данных

Поиск последовательности меток Х* осуществляют с помощью алгоритма динамического программирования Витерби. Алгоритм Витерби может рассматриваться как вариант алгоритма поиска на графе состояний, где вершинам соответствуют метки слов.

Характерно, что для любой текущей вершины множество дочерних меток всегда одно и то же. Более того, для каждой дочерней вершины множества родительских вершин тоже совпадают. Это объясняется тем, что на графе состояний осуществляются переходы с учетом всех возможных сочетаний меток. Предположение Маркова обеспечивают существенное упрощение задачи распознавания частей речи при сохранении высокой точности назначения меток словам.

Так, при наличии 200 меток точность назначения примерно равна 97%. Долгое время имперический анализ выполнялся с помощью стохастических контекстно-свободных грамматик. Однако для них характерен существенный недостаток. Он заключается в том, что различным грамматическим разборам могут назначаться одинаковые вероятности. Это происходит из-за того, что вероятность грамматического разбора представляется в виде произведения вероятностей правил, участвующих в разборе. Если в ходе разбора используются различные правила, характеризуемые одинаковыми вероятностями, то это и порождает указанную проблему. Лучшие результаты дает грамматика, учитывающая лексику языка.

В этом случае в правила включаются необходимые лексические сведения, которые обеспечивают различные значения вероятности для одного и того же правила в разных лексических окружениях. Имперический синтаксический анализ в большей степени соответствует распознаванию образов, чем традиционному грамматическому разбору в его классическом понимании.

Сравнительные исследования показали, что правильность имперического грамматического разбора приложений естественного языка оказывается выше по сравнению с традиционным грамматическим разбором.

Обзор существующих методов распознавания образов

Л.П. Попова , И.О. Датьев

Способность ";распознавать"; считается основным свойством человеческих существ, как, впрочем, и других живых организмов. Распознавание образов - раздел кибернетики, разрабатывающий принципы и методы классификации, а также идентификации предметов, явлений, процессов, сигналов, ситуаций - всех тех объектов, которые могут быть описаны конечным набором некоторых признаков или свойств, характеризующих объект.

Образ представляет собой описание объекта. Образы обладают характерным свойством, проявляющимся в том, что ознакомление с конечным числом явлений из одного и того же множества дает возможность узнавать сколь угодно большое число его представителей.

В теории распознавания образов можно выделить два основных направления:

    изучение способностей к распознаванию, которыми обладают человеческие существа и другие живые организмы;

    развитие теории и методов построения устройств, предназначенных для решения отдельных задач распознавания образов в определенных прикладных областях.

Далее в статье описываются проблемы, принципы и методы реализации систем распознавания образов, связанные с развитием второго направления. Во второй части статьи рассматриваются нейросетевые методы распознавания образов, которые могут быть отнесены к первому направлению теории распознавания образов.

Проблемы построения систем распознавания образов

Задачи, возникающие при построении автоматических систем распознавания образов, можно обычно отнести к нескольким основным областям. Первая из них связана с представлением"; исходных данных, полученных как результаты измерений для подлежащего распознаванию объекта. Это проблема чувствительности . Каждая измеренная величина является некоторой ";характеристикой образа или объекта. Допустим, например, что образами являются буквенно-цифровые символы. B таком случае, в датчике может быть успешно использована измерительная сетчатка, подобно приведенной на рис. 1(а). Если сетчатка состоит из n-элементов, то результаты измерений можно представить в виде вектора измерений или вектора образа ,

где каждый элемент xi, принимает, например, значение 1, если через i-ю ячейку сетчатки проходит изображение символа, и значение 0 в противном случае.

Рассмотрим рис. 2(б). B этом случае образами служат непрерывные функции (типа звуковых сигналов) переменной t. Если измерение значений функций производится в дискретных точках t1,t2, ..., tn, то вектор образа можно сформировать, приняв x1= f(t1),x2=f(t2),... , xn = f(tn).

Рисунок 1. Измерительная сетчатка

Вторая проблема распознавания образов связана с выделением характерных признаков или свойств из полученных исходных данных и снижением размерности векторов образов. Эту проблему часто определяют как проблему предварительной обработки и выбора признаков .

Признаки класса образов представляют собой характерные свойства, общие для всех образов данного класса. Признаки, характеризующие различия между отдельными классами, можно интерпретировать как межклассовые признаки. Внутриклассовые признаки, общие для всех рассматриваемых классов, не несут полезной информации с точки зрения распознавания и могут не приниматься во внимание. Выбор признаков считается одной из важных задач, связанных с построением распознающих систем. Если результаты измерений позволяют получить полный набор различительных признаков для всех классов, собственно распознавание и классификация образов не вызовут особых затруднений. Автоматическое распознавание тогда сведется к процессу простого сопоставления или процедурам типа просмотра таблиц. B большинстве практических задач распознавания, однако, определение полного набора различительных признаков оказывается делом исключительно трудным, если вообще не невозможным. Из исходных данных обычно удается извлечь некоторые из различительных признаков и использовать их для упрощения процесса автоматического распознавания образов. B частности, размерность векторов измерений можно снизить с помощью преобразований, обеспечивающих минимизацию потери информации.

Третья проблема, связанная с построением систем распознавания образов, состоит в отыскании оптимальных решающих процедур, необходимых при идентификации и классификации. После того как данные, собранные о подлежащих распознаванию образах, представлены точками или векторами измерений в пространстве образов, предоставим машине выяснить, какому классу образов эти данные соответствуют. Пусть машина предназначена для различения M классов, обозначенных w1, w2, ... ..., wm. B таком случае, пространство образов можно считать состоящим из M областей, каждая из которых содержит точки, соответствующие образам из одного класса. При этом задача распознавания может рассматриваться как построение границ областей решений, разделяющих M классов, исходя из зарегистрированных векторов измерений. Пусть эти границы определены, например, решающими функциями d1(х),d2(x),..., dm(х). Эти функции, называемые также дискриминантными функциями, представляют собой скалярные и однозначные функции образа х. Если di (х) > dj (х), то образ х принадлежит классу w1. Другими словами, если i-я решающая функция di(x) имеет наибольшее значение, то содержательной иллюстрацией подобной схемы автоматической классификации, основанной на реализации процесса принятия решения, служит приведенная на рис. 2 (на схеме «ГР» - генератор решающих функций).

Рисунок 2. Схема автоматической классификации.

Решающие функции можно получать целым рядом способов. B тех случаях, когда о распознаваемых образах имеются полные априорные сведения, решающие функции могут быть определены точно на основе этой информации. Если относительно образов имеются лишь качественные сведения, могут быть выдвинуты разумные допущения о виде решающих функций. B последнем случае, границы областей решений могут существенно отклоняться от истинных, и поэтому необходимо создавать систему, способную приходить к удовлетворительному результату посредством ряда последовательных корректировок.

Объекты (образы), подлежащие распознаванию и классификации с помощью автоматической системы распознавания образов, должны обладать набором измеримых характеристик. Когда для целой группы образов результаты соответствующих измерений оказываются аналогичными, считается, что эти объекты принадлежат одному классу. Цель работы системы распознавания образов заключается в том, чтобы на основе собранной информации определить класс объектов с характеристиками, аналогичными измеренным у распознаваемых объектов. Правильность распознавания зависит от объема различающей информации, содержащейся в измеряемых характеристиках, и эффективности использования этой информации.

      Основные методы реализации систем распознавания образов

Распознаванием образов называются задачи построения и применения формальных операций над числовыми или символьными отображениями объектов реального или идеального мира, результаты, решения которых отражают отношения эквивалентности между этими объектами. Отношения эквивалентности выражают принадлежность оцениваемых объектов к каким-либо классам, рассматриваемым как самостоятельные семантические единицы.

При построении алгоритмов распознавания классы эквивалентности могут задаваться исследователем, который пользуется собственными содержательными представлениями или использует внешнюю дополнительную информацию о сходстве и различии объектов в контексте решаемой задачи. Тогда говорят о “распознавании с учителем”. В противном случае, т.е. когда автоматизированная система решает задачу классификации без привлечения внешней обучающей информации, говорят об автоматической классификации или “распознавании без учителя”. Большинство алгоритмов распознавания образов требует привлечения весьма значительных вычислительных мощностей, которые могут быть обеспечены только высокопроизводительной компьютерной техникой.

Различные авторы (Ю.Л. Барабаш , В.И. Васильев , А.Л. Горелик, В.А. Скрипкин , Р. Дуда, П. Харт , Л.Т.Кузин , Ф.И. Перегудов, Ф.П. Тарасенко , Темников Ф.Е., Афонин В.А., Дмитриев В.И. , Дж. Ту, Р. Гонсалес , П. Уинстон , К. Фу , Я.З. Цыпкин и др.) дают различную типологию методов распознавания образов. Одни авторы различают параметрические, непараметрические и эвристические методы, другие – выделяют группы методов, исходя из исторически сложившихся школ и направлений в данной области.

В то же время, известные типологии не учитывают одну очень существенную характеристику, которая отражает специфику способа представления знаний о предметной области с помощью какого-либо формального алгоритма распознавания образов. Д.А.Поспелов выделяет два основных способа представления знаний :

    Интенсиональное представление - в виде схемы связей между атрибутами (признаками).

    Экстенсиональное представление - с помощью конкретных фактов (объекты, примеры).

Необходимо отметить, что существование именно этих двух групп методов распознавания: оперирующих с признаками, и оперирующих с объектами, глубоко закономерно. С этой точки зрения ни один из этих методов, взятый отдельно от другого, не позволяет сформировать адекватное отражение предметной области. Между этими методами существует отношение дополнительности в смысле Н.Бора , поэтому перспективные системы распознавания должны обеспечивать реализацию обоих этих методов, а не только какого–либо одного из них.

Таким образом, в основу классификации методов распознавания, предложенной Д.А.Поспеловым , положены фундаментальные закономерности, лежащие в основе человеческого способа познания вообще, что ставит ее в совершенно особое (привилегированное) положение по сравнению с другими классификациями, которые на этом фоне выглядят более легковесными и искусственными.

Интенсиональные методы

Отличительной особенностью интенсиональных методов является то, что в качестве элементов операций при построении и применении алгоритмов распознавания образов они используют различные характеристики признаков и их связей. Такими элементами могут быть отдельные значения или интервалы значений признаков, средние величины и дисперсии, матрицы связей признаков и т. п., над которыми производятся действия, выражаемые в аналитической или конструктивной форме. При этом объекты в данных методах не рассматриваются как целостные информационные единицы, а выступают в роли индикаторов для оценки взаимодействия и поведения своих атрибутов.

Группа интенсиональных методов распознавания образов обширна, и ее деление на подклассы носит в определенной мере условный характер:

– методы, основанные на оценках плотностей распределения значений признаков

– методы, основанные на предположениях о классе решающих функций

– логические методы

– лингвистические (структурные) методы.

Методы, основанные на оценках плотностей распределения значений признаков. Эти методы распознавания образов заимствованы из классической теории статистических решений, в которой объекты исследования рассматриваются как реализации многомерной случайной величины, распределенной в пространстве признаков по какому-либо закону. Они базируются на байесовской схеме принятия решений, апеллирующей к априорным вероятностям принадлежности объектов к тому или иному распознаваемому классу и условным плотностям распределения значений вектора признаков. Данные методы сводятся к определению отношения правдоподобия в различных областях многомерного пространства признаков.

Группа методов, основанных на оценке плотностей распределения значений признаков, имеет прямое отношение к методам дискриминантного анализа. Байесовский подход к принятию решений и относится к наиболее разработанным в современной статистике так называемым параметрическим методам, для которых считается известным аналитическое выражение закона распределения (в данном случае нормальный закон) и требуется оценить лишь небольшое количество параметров (векторы средних значений и ковариационные матрицы).

К этой группе относится и метод вычисления отношения правдоподобия для независимых признаков. Этот метод, за исключением предположения о независимости признаков (которое в действительности практически никогда не выполняется), не предполагает знания функционального вида закона распределения. Его можно отнести к непараметрическим методам .

Другие непараметрические методы, применяемые тогда, когда вид кривой плотности распределения неизвестен и нельзя сделать вообще никаких предположений о ее характере, занимают особое положение. К ним относятся известные метод многомерных гистограмм, метод “k-ближайших соседей, метод евклидова расстояния, метод потенциальных функций и др., обобщением которых является метод, получивший название “оценки Парзена”. Эти методы формально оперируют объектами как целостными структурами, но в зависимости от типа задачи распознавания могут выступать и в интенсиональной и в экстенсиональной ипостасях.

Непараметрические методы анализируют относительные количества объектов, попадающих в заданные многомерные объемы, и используют различные функции расстояния между объектами обучающей выборки и распознаваемыми объектами. Для количественных признаков, когда их число много меньше объема выборки, операции с объектами играют промежуточную роль в оценке локальных плотностей распределения условных вероятностей и объекты не несут смысловой нагрузки самостоятельных информационных единиц. В то же время, когда количество признаков соизмеримо или больше числа исследуемых объектов, а признаки носят качественный или дихотомический характер, то ни о каких локальных оценках плотностей распределения вероятностей не может идти речи. В этом случае объекты в указанных непараметрических методах рассматриваются как самостоятельные информационные единицы (целостные эмпирические факты) и данные методы приобретают смысл оценок сходства и различия изучаемых объектов.

Таким образом, одни и те же технологические операции непараметрических методов в зависимости от условий задачи имеют смысл либо локальных оценок плотностей распределения вероятностей значений признаков, либо оценок сходства и различия объектов.

В контексте интенсионального представления знаний здесь рассматривается первая сторона непараметрических методов, как оценок плотностей распределения вероятностей. Многие авторы отмечают, что на практике непараметрические методы типа оценок Парзена работают хорошо. Основными трудностями применения указанных методов считаются необходимость запоминания всей обучающей выборки для вычисления оценок локальных плотностей распределения вероятностей и высокая чувствительность к непредставительности обучающей выборки.

Методы, основанные на предположениях о классе решающих функций. В данной группе методов считается известным общий вид решающей функции и задан функционал ее качества. На основании этого функционала по обучающей последовательности ищется наилучшее приближение решающей функции. Самыми распространенными являются представления решающих функций в виде линейных и обобщенных нелинейных полиномов. Функционал качества решающего правила обычно связывают с ошибкой классификации.

Основным достоинством методов, основанных на предположениях о классе решающих функций, является ясность математической постановки задачи распознавания, как задачи поиска экстремума. Решение этой задачи нередко достигается с помощью каких-либо градиентных алгоритмов. Многообразие методов этой группы объясняется широким спектром используемых функционалов качества решающего правила и алгоритмов поиска экстремума. Обобщением рассматриваемых алгоритмов, к которым относятся, в частности, алгоритм Ньютона, алгоритмы перцептронного типа и др., является метод стохастической аппроксимации. В отличие от параметрических методов распознавания успешность применения данной группы методов не так сильно зависит от рассогласования теоретических представлений о законах распределения объектов в пространстве признаков с эмпирической реальностью. Все операции подчинены одной главной цели - нахождению экстремума функционала качества решающего правила. В то же время результаты параметрических и рассматриваемых методов могут быть похожими. Как показано выше, параметрические методы для случая нормальных распределений объектов в различных классах с равными ковариационными матрицами приводят к линейным решающим функциям. Отметим также, что алгоритмы отбора информативных признаков в линейных диагностических моделях, можно интерпретировать как частные варианты градиентных алгоритмов поиска экстремума.

Возможности градиентных алгоритмов поиска экстремума, особенно в группе линейных решающих правил, достаточно хорошо изучены. Сходимость этих алгоритмов доказана только для случая, когда распознаваемые классы объектов отображаются в пространстве признаков компактными геометрическими структурами. Однако стремление добиться достаточного качества решающего правила нередко может быть удовлетворено с помощью алгоритмов, не имеющих строгого математического доказательства сходимости решения к глобальному экстремуму .

К таким алгоритмам относится большая группа процедур эвристического программирования, представляющих направление эволюционного моделирования. Эволюционное моделирование является бионическим методом, заимствованным у природы. Оно основано на использовании известных механизмов эволюции с целью замены процесса содержательного моделирования сложного объекта феноменологическим моделированием его эволюции.

Известным представителем эволюционного моделирования в распознавании образов является метод группового учета аргументов (МГУА). В основу МГУА положен принцип самоорганизации, и алгоритмы МГУА воспроизводят схему массовой селекции. В алгоритмах МГУА особым образом синтезируются и отбираются члены обобщенного полинома, который часто называют полиномом Колмогорова-Габора. Этот синтез и отбор производится с нарастающим усложнением, и заранее нельзя предугадать, какой окончательный вид будет иметь обобщенный полином. Сначала обычно рассматривают простые попарные комбинации исходных признаков, из которых составляются уравнения решающих функций, как правило, не выше второго порядка. Каждое уравнение анализируется как самостоятельная решающая функция, и по обучающей выборке тем или иным способом находятся значения параметров составленных уравнений. Затем из полученного набора решающих функций отбирается часть в некотором смысле лучших. Проверка качества отдельных решающих функций осуществляется на контрольной (проверочной) выборке, что иногда называют принципом внешнего дополнения. Отобранные частные решающие функции рассматриваются далее как промежуточные переменные, служащие исходными аргументами для аналогичного синтеза новых решающих функций и т. д. Процесс такого иерархического синтеза продолжается до тех пор, пока не будет достигнут экстремум критерия качества решающей функции, что на практике проявляется в ухудшении этого качества при попытках дальнейшего увеличения порядка членов полинома относительно исходных признаков.

Принцип самоорганизации, положенный в основу МГУА, называют эвристической самоорганизацией, так как весь процесс основывается на введении внешних дополнений, выбираемых эвристически. Результат решения может существенно зависеть от этих эвристик. От того, как разделены объекты на обучающую и проверочную выборки, как определяется критерий качества распознавания, какое количество переменных пропускается в следующий ряд селекции и т. д., зависит результирующая диагностическая модель.

Указанные особенности алгоритмов МГУА свойственны и другим подходам к эволюционному моделированию. Но отметим здесь еще одну сторону рассматриваемых методов. Это - их содержательная сущность. С помощью методов, основанных на предположениях о классе решающих функций (эволюционных и градиентных), можно строить диагностические модели высокой сложности и получать практически приемлемые результаты. В то же время достижению практических целей в данном случае не сопутствует извлечение новых знаний о природе распознаваемых объектов. Возможность извлечения этих знаний, в частности знаний о механизмах взаимодействия атрибутов (признаков), здесь принципиально ограничена заданной структурой такого взаимодействия, зафиксированной в выбранной форме решающих функций. Поэтому максимально, что можно сказать после построения той или иной диагностической модели - это перечислить комбинации признаков и сами признаки, вошедшие в результирующую модель. Но смысл комбинаций, отражающих природу и структуру распределений исследуемых объектов, в рамках данного подхода часто остается нераскрытым.

Логические методы . Логические методы распознавания образов базируются на аппарате алгебры логики и позволяют оперировать информацией, заключенной не только в отдельных признаках, но и в сочетаниях значений признаков. В этих методах значения какого-либо признака рассматриваются как элементарные события.

В самом общем виде логические методы можно охарактеризовать как разновидность поиска по обучающей выборке логических закономерностей и формирование некоторой системы логических решающих правил (например, в виде конъюнкций элементарных событий), каждое из которых имеет собственный вес. Группа логических методов разнообразна и включает методы различной сложности и глубины анализа. Для дихотомических (булевых) признаков популярными являются так называемые древообразные классификаторы, метод тупиковых тестов, алгоритм “Кора” и другие. Более сложные методы основываются на формализации индуктивных методов Д.С.Милля. Формализация осуществляется путем построения квазиаксиоматической теории и базируется на многосортной многозначной логике с кванторами по кортежам переменной длины .

Алгоритм “Кора”, как и другие логические методы распознавания образов, является достаточно трудоемким, поскольку при отборе конъюнкций необходим полный перебор. Поэтому при применении логических методов предъявляются высокие требования к эффективной организации вычислительного процесса, и эти методы хорошо работают при сравнительно небольших размерностях пространства признаков и только на мощных компьютерах.

Лингвистические (синтаксические или структурные) методы. Лингвистические методы распознавания образов основаны на использовании специальных грамматик порождающих языки, с помощью которых может описываться совокупность свойств распознаваемых объектов . Грамматикой называют правила построения объектов из этих непроизводных элементов.

Если описание образов производится с помощью непроизводных элементов (подобразов) и их отношений, то для построения автоматических систем распознавания применяется лингвистический или синтаксический подход с использованием принципа общности свойств. Образ можно описать с помощью иерархической структуры подобразов, аналогичной синтаксической структуре языка. Это обстоятельство позволяет применять при решении задач распознавания образов теорию формальных языков. Предполагается, что грамматика образов содержит конечные множества элементов, называемых переменными, непроизводными элементами и правилами подстановки. Характер правил подстановки определяет тип грамматики. Среди наиболее изученных грамматик можно отметить регулярные, бесконтекстные и грамматики непосредственно составляющих. Ключевыми моментами данного подхода являются выбор непроизводных элементов образа, объединение этих элементов и связывающих их отношений в грамматики образов и, наконец, реализация в соответствующем языке процессов анализа и распознавания. Такой подход особенно полезен при работе с образами, которые либо не могут быть описаны числовыми измерениями, либо столь сложны, что их локальные признаки идентифицировать не удается и приходится обращаться к глобальным свойствам объектов.

Например, Е.А. Бутаков, В.И. Островский, И.Л. Фадеев предлагают следующую структуру системы для обработки изображений (рис. 3), использующую лингвистический подход, где каждый из функциональных блоков является программным (микропрограммным) комплексом (модулем), реализующим соответствующие функции.

Рисунок 3. Структурная схема распознающего устройства

Попытки применить методы математической лингвистики к задаче анализа изображений приводят к необходимости решить ряд проблем, связанных с отображением двумерной структуры изображения на одномерные цепочки формального языка.

Экстенсиональные методы

В методах данной группы, в отличие от интенсионального направления, каждому изучаемому объекту в большей или меньшей мере придается самостоятельное диагностическое значение. По своей сути эти методы близки к клиническому подходу, который рассматривает людей не как проранжированную по тому или иному показателю цепочку объектов, а как целостные системы, каждая из которых индивидуальна и имеет особенную диагностическую ценность . Такое бережное отношение к объектам исследования не позволяет исключать или утрачивать информацию о каждом отдельном объекте, что происходит при применении методов интенсионального направления, использующих объекты только для обнаружения и фиксации закономерностей поведения их атрибутов.

Основными операциями в распознавании образов с помощью обсуждаемых методов являются операции определения сходства и различия объектов. Объекты в указанной группе методов играют роль диагностических прецедентов. При этом в зависимости от условий конкретной задачи роль отдельного прецедента может меняться в самых широких пределах: от главной и определяющей и до весьма косвенного участия в процессе распознавания. В свою очередь условия задачи могут требовать для успешного решения участия различного количества диагностических прецедентов: от одного в каждом распознаваемом классе до полного объема выборки, а также разных способов вычисления мер сходства и различия объектов. Этими требованиями объясняется дальнейшее разделение экстенсиональных методов на подклассы:

    метод сравнения с прототипом;

    метод k–ближайших соседей;

    коллективы решающих правил.

Метод сравнения с прототипом. Это наиболее простой экстенсиональный метод распознавания. Он применяется, например, тогда, когда распознаваемые классы отображаются в пространстве признаков компактными геометрическими группировками. В таком случае обычно в качестве точки – прототипа выбирается центр геометрической группировки класса (или ближайший к центру объект).

Для классификации неизвестного объекта находится ближайший к нему прототип, и объект относится к тому же классу, что и этот прототип. Очевидно, никаких обобщенных образов классов в данном методе не формируется.

В качестве меры близости могут применяться различные типы расстояний. Часто для дихотомических признаков используется расстояние Хэмминга, которое в данном случае равно квадрату евклидова расстояния. При этом решающее правило классификации объектов эквивалентно линейной решающей функции.

Указанный факт следует особо отметить. Он наглядно демонстрирует связь прототипной и признаковой репрезентации информации о структуре данных. Пользуясь приведенным представлением, можно, например, любую традиционную измерительную шкалу, являющуюся линейной функцией от значений дихотомических признаков, рассматривать как гипотетический диагностический прототип. В свою очередь, если анализ пространственной структуры распознаваемых классов позволяет сделать вывод об их геометрической компактности, то каждый из этих классов достаточно заменить одним прототипом который, фактически эквивалентен линейной диагностической модели.

На практике, конечно, ситуация часто бывает отличной от описанного идеализированного примера. Перед исследователем, намеревающимся применить метод распознавания, основанный на сравнении с прототипами диагностических классов, встают непростые проблемы. Это, в первую очередь, выбор меры близости (метрики), от которого может существенно измениться пространственная конфигурация распределения объектов. И, во-вторых, самостоятельной проблемой является анализ многомерных структур экспериментальных данных. Обе эти проблемы особенно остро встают перед исследователем в условиях высокой размерности пространства признаков, характерной для реальных задач.

Метод k-ближайших соседей. Метод k-ближайших соседей для решения задач дискриминантного анализа был впервые предложен еще в 1952 году. Он заключается в следующем.

При классификации неизвестного объекта находится заданное число (k) геометрически ближайших к нему в пространстве признаков других объектов (ближайших соседей) с уже известной принадлежностью к распознаваемым классам. Решение об отнесении неизвестного объекта к тому или иному диагностическому классу принимается путем анализа информации об этой известной принадлежности его ближайших соседей, например, с помощью простого подсчета голосов.

Первоначально метод k-ближайших соседей рассматривался как непараметрический метод оценивания отношения правдоподобия. Для этого метода получены теоретические оценки его эффективности в сравнении с оптимальным байесовским классификатором. Доказано, что асимптотические вероятности ошибки для метода k-ближайших соседей превышают ошибки правила Байеса не более чем в два раза.

Как отмечалось выше, в реальных задачах часто приходится оперировать объектами, которые описываются большим количеством качественных (дихотомических) признаков. При этом размерность пространства признаков соизмерима или превышает объем исследуемой выборки. В таких условиях удобно интерпретировать каждый объект обучающей выборки, как отдельный линейный классификатор. Тогда тот или иной диагностический класс представляется не одним прототипом, а набором линейных классификаторов. Совокупное взаимодействие линейных классификаторов дает в итоге кусочно-линейную поверхность, разделяющую в пространстве признаков распознаваемые классы. Вид разделяющей поверхности, состоящей из кусков гиперплоскостей, может быть разнообразным и зависит от взаимного расположения классифицируемых совокупностей.

Также можно использовать другую интерпретацию механизмов классификации по правилу k-ближайших соседей. В ее основе лежит представление о существовании некоторых латентных переменных, абстрактных или связанных каким-либо преобразованием с исходным пространством признаков. Если в пространстве латентных переменных попарные расстояния между объектами такие же, как и в пространстве исходных признаков, и количество этих переменных значительно меньше числа объектов, то интерпретация метода k-ближайших соседей может рассматриваться под углом зрения сравнения непараметрических оценок плотностей распределения условных вероятностей. Приведенное здесь представление о латентных переменных близко по своей сути к представлению об истинной размерности и другим представлениям, используемым в различных методах снижения размерности.

При использовании метода k-ближайших соседей для распознавания образов исследователю приходится решать сложную проблему выбора метрики для определения близости диагностируемых объектов. Эта проблема в условиях высокой размерности пространства признаков чрезвычайно обостряется вследствие достаточной трудоемкости данного метода, которая становится значимой даже для высокопроизводительных компьютеров. Поэтому здесь так же, как и в методе сравнения с прототипом, необходимо решать творческую задачу анализа многомерной структуры экспериментальных данных для минимизации числа объектов, представляющих диагностические классы.

Алгоритмы вычисления оценок (голосования). Принцип действия алгоритмов вычисления оценок (АВО) состоит в вычислении приоритете (оценок сходства), характеризующих “близость” распознаваемого и эталонных объектов по системе ансамблей признаков, представляющей собой систему подмножеств заданного множества признаков.

В отличие от всех ранее рассмотренных методов алгоритмы вычисления оценок принципиально по-новому оперируют описаниями объектов. Для этих алгоритмов объекты существуют одновременно в самых разных подпространствах пространства признаков. Класс АВО доводит идею использования признаков до логического конца: поскольку не всегда известно, какие сочетания признаков наиболее информативны, то в АВО степень сходства объектов вычисляется при сопоставлении всех возможных или определенных сочетаний признаков, входящих в описания объектов .

Коллективы решающих правил. В решающем правиле применяется двухуровневая схема распознавания. На первом уровне работают частные алгоритмы распознавания, результаты которых объединяются на втором уровне в блоке синтеза. Наиболее распространенные способы такого объединения основаны на выделении областей компетентности того или иного частного алгоритма. Простейший способ нахождения областей компетентности заключается в априорном разбиении пространства признаков исходя из профессиональных соображений конкретной науки (например, расслоение выборки по некоторому признаку). Тогда для каждой из выделенных областей строится собственный распознающий алгоритм. Другой способ базируется на применении формального анализа для определения локальных областей пространства признаков как окрестностей распознаваемых объектов, для которых доказана успешность работы какого-либо частного алгоритма распознавания.

Самый общий подход к построению блока синтеза рассматривает результирующие показатели частных алгоритмов как исходные признаки для построения нового обобщенного решающего правила. В этом случае могут использоваться все перечисленные выше методы интенсионального и экстенсионального направлений в распознавании образов. Эффективными для решения задачи создания коллектива решающих правил являются логические алгоритмы типа “Кора” и алгоритмы вычисления оценок (АВО), положенные в основу так называемого алгебраического подхода, обеспечивающего исследование и конструктивное описание алгоритмов распознавания, в рамки которого укладываются все существующие типы алгоритмов .

Нейросетевые методы

Нейросетевые методы - это методы, базирующиеся на применении различных типов нейронных сетей (НС). Основные направления применения различных НС для распознавания образов и изображений :

    применение для извлечение ключевых характеристик или признаков заданных образов,

    классификация самих образов или уже извлечённых из них характеристик (в первом случае извлечение ключевых характеристик происходит неявно внутри сети),

    решение оптимизационных задач.

Многослойные нейронные сети. Архитектура многослойной нейронной сети (МНС) состоит из последовательно соединённых слоёв, где нейрон каждого слоя своими входами связан со всеми нейронами предыдущего слоя, а выходами - следующего.

Простейшее применение однослойной НС (называемой автоассоциативной памятью) заключается в обучении сети восстанавливать подаваемые изображения. Подавая на вход тестовое изображение и вычисляя качество реконструированного изображения, можно оценить насколько сеть распознала входное изображение. Положительные свойства этого метода заключаются в том, что сеть может восстанавливать искажённые и зашумленные изображения, но для более серьёзных целей он не подходит.

МНС так же используется для непосредственной классификации изображений – на вход подаётся или само изображение в каком-либо виде, или набор ранее извлечённых ключевых характеристик изображения, на выходе нейрон с максимальной активностью указывает принадлежность к распознанному классу (рис. 4). Если эта активность ниже некоторого порога, то считается, что поданный образ не относится ни к одному из известных классов. Процесс обучения устанавливает соответствие подаваемых на вход образов с принадлежностью к определённому классу. Это называется обучением с учителем . Такой подход хорош для задач контроля доступа небольшой группы лиц. Такой подход обеспечивает непосредственное сравнение сетью самих образов, но с увеличением числа классов время обучения и работы сети возрастает экспоненциально. Поэтому для таких задач, как поиск похожего человека в большой базе данных, требует извлечения компактного набора ключевых характеристик, на основе которых можно производить поиск.

Подход к классификации с использованием частотных характеристик всего изображения, описан в . Применялась однослойная НС, основанная на многозначных нейронах.

В показано применение НС для классификации изображений, когда на вход сети поступают результаты декомпозиции изображения по методу главных компонент.

В классической МНС межслойные нейронные соединения полносвязны, и изображение представлено в виде одномерного вектора, хотя оно двумерно. Архитектура свёрточной НС направлена на преодоление этих недостатков. В ней использовались локальные рецепторные поля (обеспечивают локальную двумерную связность нейронов), общие веса (обеспечивают детектирование некоторых черт в любом месте изображения) и иерархическая организация с пространственными подвыборками (spatial subsampling). Свёрточная НС (СНС) обеспечивает частичную устойчивость к изменениям масштаба, смещениям, поворотам, искажениям.

МНС применяются и для обнаружения объектов определённого типа. Кроме того, что любая обученная МНС в некоторой мере может определять принадлежность образов к “своим” классам, её можно специально обучить надёжному детектированию определённых классов. В этом случае выходными классами будут классы принадлежащие и не принадлежащие к заданному типу образов. В применялся нейросетевой детектор для обнаружения изображения лица во входном изображении. Изображение сканировалось окном 20х20 пикселей, которое подавалось на вход сети, решающей принадлежит ли данный участок к классу лиц. Обучение производилось как с использованием положительных примеров (различных изображений лиц), так и отрицательных (изображений, не являющихся лицами). Для повышения надёжности детектирования использовался коллектив НС, обученных с различными начальными весами, вследствие чего НС ошибались по разному, а окончательное решение принималось голосованием всего коллектива.

Рисунок 5. Главные компоненты (собственные лица) и разложение изображения на главные компоненты

НС применяется так же для извлечения ключевых характеристик изображения, которые затем используются для последующей классификации. В , показан способ нейросетевой реализации метода анализа главных компонент. Суть метода анализа главных компонент заключается в получении максимально декореллированных коэффициентов, характеризующих входные образы. Эти коэффициенты называются главными компонентами и используются для статистического сжатия изображений, в котором небольшое число коэффициентов используется для представления всего образа. НС с одним скрытым слоем содержащим N нейронов (которое много меньше чем размерность изображения), обученная по методу обратного распространения ошибки восстанавливать на выходе изображение, поданное на вход, формирует на выходе скрытых нейронов коэффициенты первых N главных компонент, которые и используются для сравнения. Обычно используется от 10 до 200 главных компонент. С увеличением номера компоненты её репрезентативность сильно понижается, и использовать компоненты с большими номерами не имеет смысла. При использовании нелинейных активационных функций нейронных элементов возможна нелинейная декомпозиция на главные компоненты. Нелинейность позволяет более точно отразить вариации входных данных. Применяя анализ главных компонент к декомпозиции изображений лиц, получим главные компоненты, называемые собственными лицами , которым так же присуще полезное свойство – существуют компоненты, которые в основном отражают такие существенные характеристики лица как пол, раса, эмоции. При восстановлении компоненты имеют вид, похожий на лицо, причём первые отражают наиболее общую форму лица, последние – различные мелкие отличия между лицами (рис. 5). Такой метод хорошо применим для поиска похожих изображений лиц в больших базах данных. Показана так же возможность дальнейшего уменьшения размерности главных компонент при помощи НС . Оценивая качество реконструкции входного изображения можно очень точно определять его принадлежность к классу лиц.

Нейронные сети высокого порядка. Нейронные сети высокого порядка (НСВП) отличаются от МНС тем, что у них только один слой, но на входы нейронов поступают так же термы высокого порядка, являющиеся произведением двух или более компонент входного вектора . Такие сети так же могут формировать сложные разделяющие поверхности.

Нейронные сети Хопфилда. НС Хопфилда (НСХ) является однослойной и полносвязной (связи нейронов на самих себя отсутствуют), её выходы связаны со входами. В отличие от МНС, НСХ является релаксационной – т.е. будучи установленной в начальное состояние, функционирует до тех пор, пока не достигнет стабильного состояния, которое и будет являться её выходным значением. Для поиска глобального минимума применительно к оптимизационным задачам используют стохастические модификации НСХ .

Применение НСХ в качестве ассоциативной памяти позволяет точно восстанавливать образы, которым сеть обучена, при подаче на вход искажённого образа. При этом сеть “вспомнит” наиболее близкий (в смысле локального минимума энергии) образ, и таким образом распознает его. Такое функционирование так же можно представить как последовательное применение автоассоциативной памяти, описанной выше. В отличие от автоассоциативной памяти НСХ идеально точно восстановит образ. Для избежания интерференционных минимумов и повышения ёмкости сети используют различные методы .

Самоорганизующиеся нейронные сети Кохонена. Самоорганизующиеся нейронные сети Кохонена (СНСК) обеспечивают топологическое упорядочивание входного пространства образов. Они позволяют топологически непрерывно отображать входное n-мерное пространство в выходное m-мерное, mn. Входной образ проецируется на некоторую позицию в сети, кодируемую как положение активированного узла. В отличие от большинства других методов классификации и кластеризации, топологическое упорядочивание классов сохраняет на выходе подобие во входных образах , что является особенно полезным при классификации данных, имеющих большое количество классов.

Когнитрон. Когнитрон своей архитектурой похож на строение зрительной коры, имеет иерархическую многослойную организацию, в которой нейроны между слоями связаны только локально. Обучается конкурентным обучением (без учителя). Каждый слой мозга реализует различные уровни обобщения; входной слой чувствителен к простым образам, таким, как линии, и их ориентации в определенных областях визуальной области, в то время как реакция других слоев является более сложной, абстрактной и независимой от позиции образа. Аналогичные функции реализованы в когнитроне путем моделирования организации зрительной коры.

Неокогнитрон является дальнейшим развитием идеи когнитрона и более точно отражает строение зрительной системы, позволяет распознавать образы независимо от их преобразований, вращений, искажений и изменений масштаба.

Когнитрон является мощным средством распознавания изображений, однако требует высоких вычислительных затрат, которые на сегодняшний день недостижимы .

Рассмотренные нейросетевые методы обеспечивают быстрое и надёжное распознавание изображений, но при использовании этих методов возникают проблемы распознавания трёхмерных объектов. Тем не менее, данный подход имеет массу достоинств.

      Заключение

В настоящее время существует достаточно большое количество систем автоматического распознавания образов для различных прикладных задач.

Распознавание образов формальными методами как фундаментальное научное направление является неисчерпаемым.

Математические методы обработки изображений имеют самые разнообразные применения: наука, техника, медицина, социальная сфера. В дальнейшем роль распознавания образов в жизни человека будет возрастать еще больше.

Нейросетевые методы обеспечивают быстрое и надёжное распознавание изображений. Данный подход имеет массу достоинств и является одним из наиболее перспективных.

Литература

    Д.В. Брилюк, В.В. Старовойтов. Нейросетевые методы распознавания изображений // /

    Кузин Л.Т. Основы кибернетики: Основы кибернетических моделей. Т.2. - М.: Энергия, 1979. - 584с.

    Перегудов Ф.И., Тарасенко Ф.П. Введение в системный анализ: Учебное пособие. – М.: Высшая школа, 1997. - 389с.

    Темников Ф.Е., Афонин В.А., Дмитриев В.И. Теоретические основы информационной техники. - М.: Энергия, 1979. - 511с.

    Ту Дж., Гонсалес Р. Принципы распознавания образов. /Пер. с англ. - М.: Мир, 1978. - 410с.

    Уинстон П. Искусственный интеллект. /Пер. с англ. - М.: Мир, 1980. - 520с.

    Фу К. Структурные методы в распознавании образов: Пер.с англ. - М.: Мир, 1977. - 320с.

    Цыпкин Я.З. Основы информационной теории идентификации. - М.: Наука, 1984. - 520с.

    Поспелов Г.С. Искусственный интеллект - основа новой информационной технологии. - М.: Наука, 1988. - 280с.

    Ю. Лифшиц, Статистические методы распознавания образов ///modern/07modernnote.pdf

    Бор Н. Атомная физика и человеческое познание. /Пер.с англ. - М.: Мир, 1961. - 151с.

    Бутаков Е.А., Островский В.И., Фадеев И.Л. Обработка изображений на ЭВМ.1987.-236с.

    Дуда Р., Харт П. Распознавание образов и анализ сцен. /Пер.с англ. - М.: Мир, 1978. - 510с.

    Дюк В.А. Компьютерная психодиагностика. - СПб: Братство, 1994. - 365с.

    Aizenberg I. N., Aizenberg N. N. and Krivosheev G.A. Multi-valued and Universal Binary Neurons: Learning Algorithms, Applications to Image Processing and Recognition. Lecture Notes in Artificial Intelligence – Machine Learning and Data Mining in Pattern Recognition, 1999, pp. 21-35.

    Ranganath S. and Arun K. Face recognition using transform features and neural networks. Pattern Recognition 1997, Vol. 30, pp. 1615-1622.

    Головко В.А. Нейроинтеллект: Теория и применения. Книга 1. Организация и обучение нейронных сетей с прямыми и обратными связями – Брест:БПИ, 1999, - 260с.

    Vetter T. and Poggio T. Linear Object Classes and Image Synthesis From a Single Example Image. IEEE Transactions on Pattern Analysis and Machine Intelligence 1997, Vol. 19, pp. 733-742.

    Головко В.А. Нейроинтеллект: Теория и применения. Книга 2. Самоорганизация, отказоустойчивость и применение нейронных сетей – Брест:БПИ, 1999, - 228с.

    Lawrence S., Giles C. L., Tsoi A. C. and Back A. D. Face Recognition: A Convolutional Neural Network Approach. IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern Recognition, pp. 1-24.

    Уоссермен Ф. Нейрокомпьютерная техника: Теория и практика, 1992 – 184с.

    Rowley H. A., Baluja S. and Kanade T. Neural Network-Based Face Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 1998, Vol. 20, pp. 23-37.

    Valentin D., Abdi H., O"Toole A. J. and Cottrell G. W. Connectionist models of face processing: a survey. IN: Pattern Recognition 1994, Vol. 27, pp. 1209-1230.

    Документ

    Им составляют алгоритмы распознавания образов . Методы распознавания образов Как отмечалось выше... реальности не существует "экосистемы вообще", а существуют только отдельные... выводы из этого детального обзора методов распознавания мы представили в...

  1. Обзор методов идентификации людей на основе изображений лиц с учетом особенностей визуального распознавания

    Обзор

    ... распознавания человеком слабоконтрастных объектов, в т.ч. лиц. Приведен обзор распространенных методов ... Существует целый ряд методов ... образом , в результате проведенного исследования подготовлена платформа для разработки метода распознавания ...

  2. Имени Глазкова Валентина Владимировна ИССЛЕДОВАНИЕ И РАЗРАБОТКА МЕТОДОВ ПОСТРОЕНИЯ ПРОГРАММНЫХ СРЕДСТВ КЛАССИФИКАЦИИ МНОГОТЕМНЫХ ГИПЕРТЕКСТОВЫХ ДОКУМЕНТОВ Специальность 05

    Автореферат диссертации

    Гипертекстовых документов. В главе приведён обзор существующих методов решения рассматриваемой задачи, описание... отсечением наименее релевантных классов // Математические методы распознавания образов : 13-я Всероссийская конференция. Ленинградская обл...

  3. Слайд 0 Обзор задач биоинформатики связанных с анализом и обработкой генетических текстов

    Лекция

    Последовательностей ДНК и белков. Обзор задач биоинформатики как задач... сигналов требует применения современных методов распознавания образов , статистических подходов и... с низкой плотностью генов. Существующие программы предсказания генов не...

Методы автоматического распознавания образов и их реализация в системах оптического распознавания текстов (Optical Character Recognition - OCR-системы) - одна из самых прогрессивных технологий искусственного интеллекта. В развитии этой технологии российские ученые занимают ведущие позиции в мире.

OCR-система понимается как система автоматического распознавания образов с помощью специальных программ изображений символов печатного или рукописного текста (например, введенного в компьютер посредством сканера) и преобразование его в формат, пригодный для обработки текстовыми процессорами, редакторами текстов и т. д.

Аббревиатура OCR иногда расшифровывается как Optical Character Reader - устройство оптического распознавания символов или автоматического чтения текста. В настоящее время такие устройства в промышленном использовании обрабатывают до 100 тыс. документов в сутки.

Промышленное использование предполагает ввод документов хорошего и среднего качества - это обработка бланков переписи населения, налоговых деклараций и т. д.

Перечислим особенности предметной области, существенные с точки зрения OCR-систем:

  • шрифтовое и размерное разнообразие символов;
  • искажения в изображениях символов (разрывы образов символов);
  • перекосы при сканировании;
  • посторонние включения в изображениях;
  • сочетание фрагментов текста на разных языках;
  • большое разнообразие классов символов, которые могут быть распознаны только при наличии дополнительной контекстной информации.

Автоматическое чтение печатных и рукописных текстов является частным случаем автоматического визуального восприятия сложных изображений. Многочисленные исследования показали, что для полного решения этой задачи необходимо интеллектуальное распознавание, т. е. «распознавание с пониманием».

Выделяются три принципа, на которых основаны все OCR-системы.

  • 1. Принцип целостности образа. В исследуемом объекте всегда есть значимые части, между которыми существуют отношения. Результаты локальных операций с частями образа интерпретируются только совместно в процессе интерпретации целостных фрагментов и всего образа в целом.
  • 2. Принцип целенаправленности. Распознавание является целенаправленным процессом выдвижения и проверки гипотез (поиска того, что ожидается от объекта).
  • 3. Принцип адаптивности. Распознающая система должна быть способна к самообучению.

Ведущие российские OCR-системы: FineReader; FineReader Рукопись; FormReader; CunieForm (Cognitive Technologies), Cognitive Forms (Cognitive Technologies) .

Система FineReader выпускается компанией ABBYY, которая была основана в 1989 г. Разработки компании ABBYY ведутся в двух направлениях: машинное зрение и прикладная лингвистика. Стратегическим направлением научных исследований и разработок является естественно-языковой аспект технологий в области машинного зрения, искусственного интеллекта и прикладной лингвистики.

CuneiForm GOLD for Windows является первой в мире само-обучаемой интеллектуальной OCR-системой, использующей новейшую технологию адаптивного распознавания текстов, поддерживает много языков. Для каждого языка поставляется словарь контекстной проверки и повышения качества результатов распознавания. Распознает любые полиграфические, машинописные гарнитуры и шрифты, получаемые с принтеров, за исключением декоративных и рукописных, а также очень низкокачественных текстов.

Характеристики систем распознавания образов. Среди ОСЯ-технологий большое значение имеют специальные технологии решения отдельных классов задач автоматического распознавания образов:

  • поиск людей по фотографиям;
  • поиск месторождений полезных ископаемых и прогнозирование погоды по данным аэрофотосъемки и снимкам со спутников в различных диапазонах светового излучения;
  • составление географических карт по исходной информации, используемой в предыдущей задаче;
  • анализ отпечатков пальцев и рисунков радужной оболочки глаза в криминалистике, охранных и медицинских системах.

На стадии подготовки и обработки информации, особенно при компьютеризации предприятия, автоматизации бухгалтерского учета, возникает задача ввода большого объема текстовой и графической информации в ПК. Основными устройствами для ввода графической информации являются: сканер, факс-модем и реже - цифровая фотокамера. Кроме того, используя программы оптического распознавания текстов, можно вводить в компьютер (оцифровывать) также и текстовую информацию. Современные программно-аппаратные системы позволяют автоматизировать ввод больших объемов информации в компьютер, применяя, например, сетевой сканер и параллельное распознавание текстов на нескольких компьютерах одновременно.

Большинство программ оптического распознавания текста работают с растровым изображением, которое получено через факс-модем, сканер, цифровую фотокамеру или другое устройство. На первом этапе ОСЯ-система должна разбить страницу на блоки текста, основываясь на особенностях правого и левого выравнивания и наличии нескольких колонок. Затем распознанный блок разбивается на строки. Несмотря на кажущуюся простоту, это не такая очевидная задача, так как на практике неизбежен перекос изображения страницы или ее фрагментов при сгибах. Даже небольшой наклон приводит к тому, что левый край одной строки становится ниже правого края следующей, особенно при маленьком межстрочном интервале. В результате возникает проблема определения строки, к которой относится тот или иной фрагмент изображения. Например, для букв

Потом строки разбиваются на непрерывные области изображения, которые соответствуют отдельным буквам; алгоритм распознавания выдвигает предположения относительно соответствия этих областей символам, а затем осуществляется выбор каждого символа, в результате чего страница восстанавливается в символах текста, причем, как правило, в заданном формате. ОСЯ-системы могут достигать наилучшей точности распознавания - свыше 99,9 % для чистых изображений, составленных из обычных шрифтов. На первый взгляд такая точность распознавания кажется идеальной, но уровень ошибок все же удручает, потому что, если имеется приблизительно 1500 символов на странице, то даже при коэффициенте успешного распознавания 99,9 % получается одна или две ошибки на страницу. В таких случаях следует воспользоваться методом проверки по словарю, т. е. если какого-то слова нет в словаре системы, то она по специальным правилам попытается найти похожее. Но это все равно не позволяет исправлять 100 % ошибок и требует контроля результатов человеком.

Встречающиеся в реальной жизни тексты обычно далеки от совершенства, и процент ошибок распознавания для «нечистых» текстов часто недопустимо велик. Грязные изображения - это наиболее очевидная проблема, потому что даже небольшие пятна могут затенять определяющие части символа или преобразовывать один в другой. Проблемой является и неаккуратное сканирование, связанное с «человеческим фактором», так как оператор, сидящий за сканером, просто не в состоянии разглаживать каждую сканируемую страницу и точно выравнивать ее по краям сканера. Если документ был ксерокопирован, нередко возникают разрывы и слияния символов. Любой из этих эффектов может заставлять систему ошибаться, потому что некоторые из ОСЯ-сис-тем предполагают, что непрерывная область изображения должна быть одиночным символом. Страница, расположенная с нарушением границ или перекосом, создает немного искаженные символьные изображения, которые могут быть перепутаны ОСЯ-сис-темой.

Программное обеспечение ОСЯ-системы обычно работает с большим растровым изображением страницы, полученной из сканера. Изображения со стандартной степенью разрешения достигаются сканированием с точностью 9600 п/д. Изображение листа формата A4 при этом разрешении занимает около 1 Мб памяти.

Основное назначение OCR-систем состоит в анализе растровой информации (отсканированного символа) и присвоении фрагменту изображения соответствующего символа. После завершения процесса распознавания OCR-системы должны уметь сохранять форматирование исходных документов, присваивать в нужном месте атрибут абзаца, сохранять таблицы, графику и т. д. Современные программы распознавания поддерживают все известные текстовые и графические форматы и форматы электронных таблиц, а также форматы HTML и PDF.

Работа с OCR-системами, как правило, не должна вызывать особых затруднений. Большинство таких систем имеют простейший автоматический режим «сканируй и распознавай» (Scan & Read), а также они поддерживают и режим распознавания изображений из файлов. Однако для того чтобы достигнуть лучших из возможных для данной системы результатов, желательно (а нередко и обязательно) предварительно вручную настроить ее на конкретный вид текста, макет бланка и качество бумаги. Страница, расположенная с нарушением границ или перекосом, создает немного искаженные символьные изображения, которые могут быть перепутаны OCR-системой.

Очень важным при работе с OCR-системой является выбор языка распознавания и типа распознаваемого материала (пишущая машинка, факс, матричный принтер, газета и т. д.), а также интуитивная понятность пользовательского интерфейса. При распознавании текстов, в которых использовано несколько языков, эффективность распознавания зависит от умения OCR-системы формировать группы языков. В то же время в некоторых системах уже имеются комбинации для наиболее часто применяемых языков, например русского и английского.

На данный момент существует огромное количество программ, поддерживающих распознавание текста как одну из возможностей. Лидером в этой области является система FineReader. Последняя версия программы (6.0) теперь имеет средства для разработки новых систем на базе технологии FineReader 6.0. В состав семейства FineReader 6.0 входят: система FineReader 6.0 Professional, FineReader 6.0 Corporate Edition, FineReader Scripting Edition 6.0 и FineReader Engine 6.0. Система FineReader 6.0, кроме того, что знает огромное количество форматов для сохранения, включая PDF, имеет возможность прямого распознавания из PDF-файлов. Новая технология Intelligent Background Filtering (интеллектуальная фильтрация фона) позволяет отсеять информацию о текстуре документа и фоновом шуме изображения: иногда для выделения текста в документе используется серый или цветной фон. Человеку это не мешает читать, но обычные алгоритмы распознавания текста испытывают серьезные затруднения при работе с буквами, расположенными поверх такого фона. Программа FineReader умеет определять зоны, содержащие подобный текст, отделяя текст от фона документа, находя точки, размер которых меньше определенной величины, и удаляя их. При этом контуры букв сохраняются, так что точки фона, близко расположенные к данным контурам, не вносят помех, способных ухудшить качество распознавания текста.

Используя возможности современных программ верстки, дизайнеры часто создают объекты сложной формы, такие как обтекание непрямоугольной картинки многоколоночным текстом. В системе FineReader 6.0 реализована поддержка распознавания таких объектов и их сохранение в файлах формата MS Word. Теперь документы сложной верстки будут точно воспроизведены в данном текстовом редакторе. Даже таблицы распознаются с максимальной точностью, сохраняя при этом все возможности для редактирования.

Система ABBYY FormReader - одна из программ распознавания от фирмы ABBYY, основанная на системе ABBYY FineReader Engine. Эта программа предназначена для распознавания и обработки форм, которые могут быть заполнены вручную. Программа ABBYY FormReader может обрабатывать формы с фиксированной схемой так же хорошо, как и формы, чья структура может меняться. Для распознавания была применена новая технология ABBYY FlexiForm technology.

Ведущие производители программного обеспечения лицензировали российскую информационную технологию для применения со своими продуктами. В популярные программные пакеты Corel Draw (Corel Corporation), FaxLine/OCR & Business Card Wizard (Inzer Corporation) и многие другие встроена OCR-библиотека CuneiForm. Эта программа стала первой в России OCR-системой, получившей MS Windows Compatible Logo.

Система Readiris Pro 7 - профессиональная программа распознавания текста. По словам производителей, данная OCR-система отличается от аналогов высочайшей точностью преобразования обычных (каждодневных) печатных документов, таких как письма, факсы, журнальные статьи, газетные вырезки, в объекты, доступные для редактирования (включая файлы формата PDF). Основными достоинствами программы являются: возможность более или менее точного распознавания картинок, сжатых «по максимуму» (с максимальной потерей качества) методом формата JPEG, поддержка цифровых камер и автоопределения ориентации страницы, поддержка до 92 языков (включая русский).

Система OmniPage 11 - продукт компании ScanSoft. Ограниченная версия этой программы (OmniPage 11 Limited Edition, OmniPage Lite) обычно поставляется в комплекте с новыми сканерами (на территории Европы и США). Разработчики утверждают, что их программа практически со 100%-ной точностью распознает печатные документы, восстанавливая их форматирование, включая столбцы, таблицы, переносы (в том числе переносы частей слов), заголовки, названия глав, подписи, номера страниц, сноски, параграфы, нумерованные списки, красные строки, графики и картинки. Есть возможность сохранения в форматы Microsoft Office, PDF и в 20 других форматов, распознавания из файлов формата PDF и редактирования в этом формате. Система искусственного интеллекта позволяет автоматически обнаруживать и исправлять ошибки после первого исправления вручную. Новый специально разработанный программный модуль «Dcspeckle» позволяет распознавать документы с ухудшенным качеством (факсы, копии, копии копий и т. д.). Преимуществом программы является возможность распознавания цветного текста и корректировки голосом. Версия OmniPage существует и для компьютеров фирмы Macintosh.

  • См.: Башмаков А. И., Башмаков И. А. Интеллектуальные информационные технологии.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.