Нарушение количество синтезируемого белка. Антибиотики, подавляющие синтез белка на рибосомах

Среди причин, вызывающих нарушения синтеза белка, важное мес­то занимают различные виды алиментарной недостаточности (полное, неполное голодание, отсутствие в пище незаменимых аминокислот, на­рушение определенного количественного соотношения между незамени­мыми аминокислотами, поступающими в организм).

Если, например, в тканевом белке триптофан, лизин, валин содержатся в равных соотно­шениях (1:1:1), а с пищевым белком эти аминокислоты поступают в соот­ношении 1:1:0,5, то синтез тканевого белка будет обеспечиваться при этом ровно наполовину. Отсутствие в клетках хотя бы одной (из 20) неза­менимой аминокислоты прекращает синтез белка в целом.

Нарушение скорости синтеза белка может быть обусловлено рас­стройством функции соответствующих генетических структур. Повреж­дение генетического аппарата может быть как наследственным, так и приобретенным, возникшим под влиянием различных мутагенных факторов (ионизирующее излучение, ультрафиолетовые лучи и пр.). На­рушение синтеза белка вызывают некоторые антибиотики. Так, «ошибки» в считывании генетического кода могут возникнуть под влиянием стреп­томицина, неомицина и других антибиотиков. Тетрациклины тормозят присоединение новых аминокислот к растущей полипептидной цепи (об­разование прочных ковалентных связей между ее цепями), препятствуя расщеплению нитей ДНК.

Одной из важных причин, вызывающих нарушение синтеза белка, может быть нарушение регуляции этого процесса. Регуляция интен­сивности и направленности белкового обмена контролируется нервной и эндокринной системами, эффекты которых реализуются путем влияния на различные ферментные системы. Децебрация животных ведет к сни-

жению синтеза белка. Соматотропний гормон, половые гормоны и инсу­лин при определенных условиях стимулируют синтез белка. Наконец, при­чиной его патологии может стать изменение активности ферментных сис­тем клеток, участвующих в синтезе белка.

Результатом действия этих факторов является уменьшение скорос­ти синтеза отдельных белков.

Количественные изменения в синтезе белков могут приводить к изменению соотношения отдельных фракций белков в сыворотке крови - диспротеинемии. Выделяют две формы диспротеинемии: гиперпро- теинемию (увеличение содержания всех или отдельных видов белков) и гипопротеинемию (уменьшение содержания всех или отдельных бел­ков). Так, некоторые заболевания печени (цирроз, гепатит), почек(нефрит, нефроз) сопровождаются уменьшением синтеза альбумина и умень­шением его содержания в сыворотке. Ряд инфекционных заболеваний, сопровождающихся обширными воспалительными процессами, ведет к увеличению синтеза и последующему повышению содержания гамма-гло­булинов в сыворотке. Развитие диспротеинемии сопровождается, как правило, сдвигами в гомеостазе (нарушение онкотического давления, водного баланса). Значительное уменьшение синтеза белков, особенно альбуминов и гамма-глобулинов, ведет к резкому снижению сопротивля­емости организма к инфекции.

При поражении печени и почек, некоторых острых и хронических вос­палительных процессах (ревматизм, инфекционный миокардит, пневмо­ния) возникают качественные изменения в синтезе белков, при этом синтезируются особые белки с измененными свойствами, например С-ре- активный белок. Примерами болезней, вызванных наличием патологичес­ких белков, являются болезни, связанные с присутствием патологическо­го гемоглобина (гемоглобинозы), нарушение свертывания крови при появлении патологических фибриногенов. К необычным белкам крови от­носятся криоглобулины, способные выпадать в осадок при температуре ниже 37° С (системные болезни, цирроз печени).

Гидролиза и усвоения белков пищи в ЖКТ.

Нарушение первого этапа белкового обмена

В желудке и кишечнике происходит гидролитическое расщепление белков пищи до пептидов и аминокислот под влиянием ферментов желудочного сока (пепсин), панкреатического (трипсин, химотрипсин, аминопептидазы и карбоксипептидазы) и кишечного (аминопептидаза, дипептидазы) соков. Образующиеся при расщеплении белков аминокислоты всасываются стенкой тонкого кишечника в кровь и потребляются клетками различных органов. Нарушение этих процессов имеет место при заболеваниях желудка (воспалительные и язвенные процессы, опухоли), поджелудочной железы (панкреатиты, закупорка протоков, рак), тонкого кишечника (энтериты, диарея, атрофия Обширные оперативные вмешательства, как удаление желудка или значительной части тонкого кишечника, сопровождаются нарушением расщепления и усвоения белков пищи. Усвоение пищевых белков нарушается при лихорадке вследствие снижения секреции пищеварительных ферментов.

При снижении секреции соляной кислоты в желудке уменьшается набухание белков в желудке и уменьшение превращения пепсиногена в пепсин. Из-за быстрой эвакуации пищи из желудка белки достаточно не гидролизируются до пептидов, т.е. часть белков попадает в двенадцатиперстную кишку в неизменном состоянии. Это также нарушает гидролиз белков в кишечнике.

Недостаточность усвоения белков пищи сопровождается дефицитом аминокислот и нарушением синтеза собственных белков. Недостаток пищевых белков не может быть полностью компенсирован избыточным введением и усвоением каких-либо других веществ, так как белки являются основным источником азота для организма.

Синтез белков происходит в организме непрерывно на протяжении всей жизни, но наиболее интенсивно совершается в период внутриутробного развития, в детском и юношеском возрасте.

Причинами нарушения синтеза белка являются:

Отсутствие достаточного количества аминокислот;

Дефицит энергии в клетках;

Расстройства нейроэндокринной регуляции;

Нарушение процессов транскрипции или трансляции информации о структуре того или иного белка, закодированной в геноме клетки.

Наиболее частой причиной нарушения синтеза белка является недостаток аминокислот в организме вследствие:

1) расстройств пищеварения и всасывания;

2) пониженного содержания белка в пище;

3) питания неполноценными белками, в которых отсутствуют или имеются в незначительном количестве незаменимые аминокислоты, не синтезирующиеся в организме.

Полный набор незаменимых аминокислот имеется в большинстве белков животного происхождения, тогда как растительные белки могут не содержать некоторые из них или содержат недостаточно (например, в белках кукурузы мало триптофана). Недостаток в организме хотя бы одной из незаменимых аминокислот ведет к снижению синтеза того или иного белка даже при изобилии остальных. К незаменимым аминокислотам относятся триптофан, лизин, метионин, изолейцин, лейцин, валин, фенилаланин, треонин, гистидин, аргинин.



Дефицит заменимых аминокислот в пище реже приводит к понижению синтеза белка, так как они могут образовываться в организме из кетокислот, являющихся продуктами метаболизма углеводов, жиров и белков.

Недостаток кетокислот возникает при сахарном диабете, нарушении процессов дезаминирования и трансаминирования аминокислот (гиповитаминоз В 6).

Недостаток источников энергии имеет место при гипоксии, действии разобщающих факторов, сахарном диабете, гиповитаминозе В 1 , дефиците никотиновой кислоты и др. Синтез белка - энергозависимый процесс.

Расстройства нейроэндокринной регуляции синтеза и расщепления белка. Нервная система оказывает на белковый обмен прямое и косвенное действие. При выпадении нервных влияний возникает расстройство трофики клетки. Денервация тканей вызывает: прекращение их стимуляции вследствие нарушения выделения нейромедиаторов; нарушение секреции или действия комедиаторов, обеспечивающих регуляцию рецепторных, мембранных и метаболических процессов; нарушение выделения и действия трофогенов.

Действие гормонов может быть анаболическим (усиливающим синтез белка) и катаболическим (повышающим распад белка в тканях).

Синтез белка увеличивается под действием:

Инсулина (обеспечивает активный транспорт в клетки многих аминокислот - особенно валина, лейцина, изолейцина; повышает скорость транскрипции ДНК в ядре; стимулирует сборку рибосом и трансляцию; тормозит использование аминокислот в глюконеогенезе, усиливает митотическую активность инсулинзависимых тканей, повышая синтез ДНК и РНК);

Соматотропного гормона (СТГ; ростовой эффект опосредуют соматомедины, вырабатываемые под его влиянием в печени). Основной из них - соматомедин С, который во всех клетках тела повышает скорость синтеза белка. Так стимулируется образование хрящевой и мышечной ткани. В хондроцитах имеются рецепторы и к самому гормону роста, что доказывает его прямое влияние на хрящевую и костную ткань;

Тиреоидных гормонов в физиологических дозах: трийодтиронин, связываясь с рецепторами в ядре клетки, действует на геном и вызывает усиление транскрипции и трансляции. Вследствие этого стимулируется синтез белка во всех клетках тела. Кроме того, тиреоидные гормоны стимулируют действие СТГ;

Половых гормонов, оказывающих СТГ-зависимый анаболический эффект на синтез белка; андрогены стимулируют образование белков в мужских половых органах, мышцах, скелете, коже и ее производных, в меньшей степени - в почках и мозгу; действие эстрогенов направлено в основном на молочные железы и женские половые органы. Следует отметить, что анаболический эффект половых гормонов не касается синтеза белка в печени.

Распад белка повышается под влиянием:

Тиреоидных гормонов при повышенной их продукции (гипертиреоз);

Глюкагона (уменьшает поглощение аминокислот и повышает распад белков в мышцах; в печени активирует протеолиз, а также стимулирует глюконеогенез и кетогенез из аминокислот; тормозит анаболический эффект СТГ);

Катехоламинов (способствуют распаду мышечных белков с мобилизацией аминокислот и использованием их печенью);

Глюкокортикоидов (усиливают синтез белков и нуклеиновых кислот в печени и повышают распад белков в мышцах, коже, костях, лимфоидной и жировой ткани с высвобождением аминокислот и вовлечением их в глюконеогенез. Кроме того, они угнетают транспорт аминокислот в мышечные клетки, снижая синтез белка).

Анаболическое действие гормонов осуществляется в основном путем активации определенных генов и усилением образования различных видов РНК (информационная, транспортная, рибосомальная), что ускоряет синтез белков; механизм катаболического действия гормонов связан с повышением активности тканевых протеиназ.

Длительное и значительное понижение синтеза белка приводит к развитию дистрофических и атрофических нарушений в различных органах и тканях вследствие недостаточного обновления структурных белков. Замедляются процессы регенерации. В детском возрасте тормозятся рост, физическое и умственное развитие. Снижается синтез различных ферментов и гормонов (СТГ, антидиуретический и тиреоидный гормоны, инсулин и др.), что приводит к эндокринопатиям, нарушению других видов обмена (углеводного, водно-солевого, основного). Понижается содержание белков в сыворотке крови в связи со снижением их синтеза в гепатоцитах. Уменьшается продукция антител и других защитных белков и, как следствие, снижается иммунологическая реактивность организма.

Причины и механизм нарушения синтеза отдельных белков. В большинстве случаев эти нарушения имеют наследственную природу. В основе их лежит отсутствие в клетках информационной РНК (иРНК), специфической матрицы для синтеза какого-либо определенного белка, или нарушение ее структуры вследствие изменения структуры гена, на котором она синтезируется. Генетические нарушения, например замена или потеря одного нуклеотида в структурном гене, приводят к синтезу измененного белка, нередко лишенного биологической активности.

К образованию аномальных белков могут привести отклонения от нормы в структуре иРНК, мутации транспортной РНК (тРНК), вследствие чего к ней присоединяется несоответствующая аминокислота, которая и будет включаться в полипептидную цепь при ее сборке (например, при образовании гемоглобина).

Причины, механизм и последствия повышенного распада тканевых белков. Наряду с синтезом в клетках организма постоянно происходит деградация белков под действием протеиназ. Обновление белков за сутки у взрослого человека составляет 1-2% общего количества белка в организме и связано преимущественно с деградацией мышечных белков, при этом 75-80% освободившихся аминокислот вновь используется для синтеза.

Преферанская Нина Германовна
Доцент кафедры фармакологии фармфакультета Первого МГМУ им. И.М. Сеченова

Антибиотики оказывают в основном бактериостатическое действие, исключение составляют аминогликозиды, оказывающие бактерицидный эффект и препараты, применяемые в больших дозах. Эти лекарственные средства обладают широким спектром антимикробного действия и часто применяются в клинической практике, особенно они незаменимы в специфической терапии таких редких инфекций, как бартонеллез, бруцеллез, криптоспоридиоз, муковисцидоз, токсоплазмоз, туляремия, туберкулез, сибирская язва, холера, чума и др.

Часть I. Макролиды

Макролиды представляют собой класс антибиотиков, которые содержат в молекуле макроциклическое лактонное кольцо, связанное с углеводными остатками аминосахаров. В зависимости от числа атомов углерода, составляющих кольцо, выделяют 14-членные, 15-членные и 16-членные макролиды. Из всех существующих антибиотиков, макролиды зарекомендовали себя как высокоэффективные и наиболее безопасные химиотерапевтические средства. Макролиды делятся на две группы: природные и полусинтетические.

Антимикробный эффект макролидов обусловлен нарушением синтеза белка на рибосомах микробной клетки. Макролиды обратимо связываются с различными доменами каталитического пептил-трансферазного центра 50S -субъединицы рибосом и ингибируют процессы транслокации и транспептидации пептидов, что приводит к прекращению сборки белковой молекулы и замедляет способность микроорганизмов к делению, размножению. В зависимости от вида микроорганизма и концентрации препарата оказывают дозозависимый эффект, проявляя при этом бактериостатическое действие, в больших дозах и на некоторые штаммы микроорганизмов - бактерицидное. Антимикробный спектр действия весьма близок к группе природных пенициллинов.

Макролиды обладают липофильными свойствами, быстро всасываются в ЖКТ, создают высокие тканевые и внутриклеточные концентрации, распределяясь во многих тканях и секретах, плохо задерживаются во внеклеточных жидкостях, не проникают через ГЭБ. Их действие проявляется в основном на стадии размножения. Они высокоэффективны только в отношении активно делящихся микроорганизмов, поэтому хорошо зарекомендовали себя при лечении острого периода заболевания и малоактивны или практически не оказывают действия на вялотекущие процессы.

Обладают повышенной активностью в отношении грам «+» кокков и внутриклеточных возбудителей (хламидий, микоплазм, легионелл), подавляют развитие грамотрицательных кокков, палочки дифтерии, возбудителей бруцеллеза, амебной дизентерии. На грам «-» микроорганизмы семейства Enterobacteriaceae P . aeruginosa и грам «-» анаэробы резистентны. Псевдомонады и ацинетобактеры обладают природной устойчивостью ко всем макролидам. Резистентность микроорганизмов к этой группе препаратов связана с изменением структуры рецепторов на 50S -субъединицах рибосом, что приводит к нарушению связывания антибиотика с рибосомами. У макролидов, линкозамидов и фениколов связывание с 50S -субъединицей рибосом происходит на различных участках, это обусловливает отсутствие перекрестной резистентности. Особенностью антимикробного действия макролидов является бактериостатическое действие в отношении тех форм бактерий, которые устойчивы к таким широко применяемым группам, как пенициллины, стрептомицины, тетрациклины.

Макролиды применяют при инфекциях нижних дыхательных путей, включая атипичные формы, обострение хронического бронхита и внебольничную пневмонию. Их назначают при инфекциях верхних дыхательных путей (синуситах, отитах, фарингитах, тонзиллитах), инфекциях полости рта, мягких тканей, кожи, инфицированных угрях и урогенитальных инфекциях. Показаниями для их применения является профилактика и лечение микобактериоза, профилактика ревматической лихорадки, эндокардита, с целью эрадикации H . pylori (кларитромицин ). Иммуномодулирующие свойства макролидов используют при панбронхонхиолите (кларитромицин, рокситромицин ) и муковисцидозе (азитромицин ).

Основные побочные эффекты при применении макролидов - желудочно-кишечные нарушения, риск которых не превышает 5-8%. В редких случаях развиваются аллергические реакции 2-3% (кожная сыпь, отечность лица, шеи, стоп, анафилактический шок), реже холестатический гепатит и псевдомембранозный колит. Наименьшая кратность введения макролидов, улучшенные фармакокинетические показатели не требуют коррекции доз при почечной недостаточности и хорошо переносятся больными. Большинство макролидов (особенно эритромицин и кларитромицин) являются мощными ингибиторами цитохрома Р-450 (CYP 3A 4, CYP3A5, CYP3A7, CYP 1A 2), поэтому на фоне их применения нарушается биотрансформация и повышается максимальная концентрация в крови совместно применяемых лекарств. Это особенно важно учитывать при применении Варфарина, Циклоспорина, Теофиллина, Дигоксина, Карбамазепина и др., которые метаболизируются в печени. Их сочетанный прием может вызвать наиболее опасные осложнения (нарушение ритма сердца, удлинение интервала Q -T , развитие ишемии конечностей и гангрены). Не подвергаются окислению цитохромом Р-450 спирамицин и азитромицин. В организме макролиды подвергаются энтерогепатической рециркуляции, экскретируются главным образом с желчью и только 5-10% препарата выводится почками.

Эритромицин (Erytromycinum) продуцируется почвенными актиномицетами (лучистыми грибами), из культуральной жидкости которых и был выделен в 1952 г. Из желудочно-кишечного тракта всасывается хорошо. В кислой среде желудка частично разрушается, поэтому вводить эритромицин следует в таблетках, покрытых кислоторезистентным покрытием, которое растворяется только в кишечнике. Препарат легко проникает в различные ткани, в т.ч. преодолевает плацентарный барьер. В ткани мозга в обычных условиях не поступает. После однократного приема внутрь максимальная концентрация в крови достигается через 2 часа. У эритромицина биодоступность составляет 2-3 часа, поэтому для поддержания терапевтического уровня в крови его следует вводить 4 раза в сутки. Высшие дозы внутрь: разовая - 0,5 г, суточная - 2 г. Выделяется с фекалиями и, частично, с мочой. Эритромицин в таблетках наиболее широко используется для лечения пневмоний, бронхитов различной этиологии, скарлатины, ангины, гнойных отитов, дифтерии, раневых инфекций. Препарат применяют при тяжелом течении инфекционного заболевания, для лечения коклюша, дифтерии. При конъюнктивите новорожденных вводят внутривенно, разовую дозу разводят в 250 мл изотонического раствора натрия хлорида, вводят медленно в течение часа. При гастропарезах эритромицин дозозависимо вызывает стимуляцию моторики желудка, увеличивает амплитуду сокращений привратника и улучшает антрально-дуоденальную координацию. Местно применяют в виде мази и раствора для наружного применения для лечения гнойно-воспалительных заболеваний кожи, инфицированных ран, трофических язв, пролежней и ожогов II -III степени. К эритромицину быстро развивается устойчивость микроорганизмов, препарат малотоксичен и редко вызывает побочные явления. Иногда возникают диспепсические нарушения (тошнота, рвота), аллергические реакции. Значительно снижается биодоступность при приеме эритромицина во время еды или после, т.к. пища уменьшает концентрацию этого антибиотика в крови более чем в 2 раза. Выпускается в тб., покр. обол. 100 и 250 мг; мазь глазная 10 г (в 1 г 10 000 ЕД); мазь для наружного и местного применения 15 мг - 10 тыс. ЕД/г. Суппозитории для детей по 0,05 г и 0,1 г. Порошок для инъекций по 0,05, 0,1 и 0,2 г и гранулы для суспензии по 0,125 г и 0,2 г во флаконах по 5 мл.

Значение белкового обмена для организма определяется, прежде всего тем, что основу всех его тканевых элементов составляют именно белки, непрерывно подвергающиеся обновлению за счет процессов ассимиляции и диссимиляции своих основных частей – аминокислот и их комплексов. Поэтому нарушения обмена белков в различных вариантах являются компонентами патогенеза всех без исключения патологических процессов.

Роль протеинов в организме человека:

· структура всех тканей

· рост и репарация (восстановление) в клетках

· ферменты, гены, антитела и гормоны – это белковые продукты

· влияние на водный баланс через онкотическое давление

· участие в регуляции кислотно-основного баланса

Общее представление о нарушении белкового обмена можно получить при изучении азотистого равновесия организма и окружающей среды.

1. Положительный азотистый баланс – это состояние, когда из организма выводится меньше азота, чем поступает с пищей. Наблюдается во время роста организма, при беременности, после голодания, при избыточной секреции анаболических гормонов (СТГ, андрогены).

2. Отрицательный азотистый баланс – это состояние, когда из организма выводится больше азота, чем поступает с пищей. Развивается при голодании, протеинурии, кровотечениях, избыточной секреции катаболических гормонов (тироксин, глюкокортикоиды).

Типовые нарушения белкового обмена

1. Нарушения количества и качества поступающего в организм белка

2. Нарушение всасывания и синтеза белков

3. Нарушение межуточного обмена аминокислот

4. Нарушение белкового состава крови

5. Нарушение конечных этапов белкового обмена

1. Нарушения количества и качества поступающего в организм белка

а) Одной из наиболее частых причин нарушений белкового обмена является количественная иликачественная белковая недостаточность. Это обусловлено ограничением поступления экзогенных белков при голодании, низкой биологической ценностью пищевых белков, дефицитом незаменимых аминокислот.

Проявления при белковой недостаточности:

· отрицательный азотистый баланс

· замедление роста и развития организма

· недостаточность процессов регенерации тканей

· уменьшение массы тела

· снижение аппетита и усвоения белка

Крайними проявлениями белковой недостаточности являются квашиоркор и алиментарный маразм.

Алиментарный маразм – патологическое состояние, возникающее в результате длительного полного голодания и характеризующееся общим истощением, нарушением обмена веществ, атрофией мышц и нарушением функций большинства органов и систем организма.

Квашиоркор – заболевание, поражающее детей раннего возраста, вызывается качественным и количественным дефицитом белка при условии общей калорийной избыточности пищи.

б) Избыточное потребление белков вызывает следующие изменения в организме:

· положительный азотистый баланс

· диспепсия

· дисбактериоз

· кишечная аутоинфекция, аутоинтоксикация

· отвращение к белковой пище

2. Нарушение всасывания и синтеза белков

· нарушения расщепления белков в желудке (гастриты с пониженной секреторной активностью и низкой кислотностью, резекции желудка, опухоли желудка). Белки – носители чужеродной антигенной информации и должны расщепляться при переваривании, утрачивая антигенность, иначе их неполное расщепление приведет к пищевой аллергии.

· нарушение всасывания в кишечнике (острые и хронические панкреатиты, опухоли поджелудочной железы, дуодениты, энтериты, резекция тонкого кишечника)

· патологические мутации регулирующих и структурных генов

· нарушение регуляции синтеза белка (изменение соотношения анаболических и катаболических гормонов)

3. Нарушение межуточного обмена аминокислот

1. Нарушение трансаминирования (образование аминокислот)

· недостаточность пиридоксина (вит. В 6)

· голодание

· заболевания печени

2. Нарушение дезаминирования (разрушение аминокислот) вызывает гипераминоацидемию ® аминоацидурию ® изменение соотношения отдельных аминокислот в крови ® нарушение синтеза белков.

· недостаток пиридоксина, рибофлавина (В 2), никотиновой кислоты

· гипоксия

· голодание

3. Нарушение декарбоксилирования (протекает с образованием СО 2 и биогенных аминов) приводит к появлению большого количества биогенных аминов в тканях и нарушению местного кровообращения, повышению проницаемости сосудов и повреждению нервного аппарата.

· гипоксия

· ишемия и деструкция тканей

4. Нарушение белкового состава крови

Гиперпротеинемия – увеличение белка в плазме крови > 80 г/л

Последствия гиперпротеинемии: повышение вязкости крови, изменение ее реологических свойств и нарушение микроциркуляции.

Гипопротеинемия – уменьшение белка в плазме крови < 60 г/л

· голодание

· нарушение переваривания и всасывания белков

· нарушение синтеза белка (поражения печени)

· потеря белка (кровопотери, заб. почек, ожоги, воспаления)

· повышенный распад белка (лихорадка, опухоли, ­катаболических гормонов)

Последствия гипопротеинемии:

· ¯ резистентности и реактивности организма

· нарушение функций всех систем организма, т.к. нарушается синтез ферментов, гормонов и т.д.

5. Нарушение конечных этапов белкового обмена. Патофизиология конечных этапов белкового обмена включает в себя патологию процессов образования азотистых продуктов и выведение их из организма. Остаточный азот крови – это небелковый азот, остающийся после осаждения белков.

В норме 20-30 мг% состав:

· мочевина 50%

· аминокислоты 25%

· др. азотистые продукты 25%

Гиперазотемия – увеличение остаточного азота в крови

Накопление остаточного азота в крови приводит к интоксикации всего организма, в первую очередь ЦНС и развитию коматозного состояния.

Имеют место также токсические эффекты , связанные с непосредственным действием ксенобиотиков на микросомные монооксигеназы. Типичным здесь является механизм токсического действия четыреххлористого углерода, который растворяется во всех мембранных элементах клеток печени с преимущественным накоплением в микросомной фракции. Здесь он связывается с цитохромом Р-450, и быстро протекающая реакция восстановления приводит к образованию радикала CCl3, который и является пусковым звеном в механизме повреждающего действия этого ксенобиотика.

Радикал резко стимулирует перекисное окисление липидов , вызывая повреждение биомембран, и приводит к деструкции цитохрома Р-450. В итоге эти механизмы, вкупе с другими, менее существенными, вызывают гибель клеток. Для описанного здесь вкратце механизма токсичности А.И.Арчаков ввел термин "летальный распад".

При взаимодействии ксенобиотиков с микросомными монооксигеназами могут образовываться не радикалы, а стабильные высокотоксичные продукты, приводящие к интоксикации. Этот вариант токсического действия называется "летальным синтезом". Например, образование токсичной фторлимонной кислоты из фторацетата, накопление формальдегида и муравьиной кислоты при окислительном превращении метанола и др.

Все химические вещества, повреждающие синтез белка , можно подразделить на 2 группы. Первая из них включает ксенобиотики, оказывающие опосредованное влияние на синтез белка через изменение процессов биоэнергетики, гормонального статуса, проницаемости биомембран и т.д. Нарушение синтеза белка в механизме их токсического действия является вторичным явлением, осложняющим, но не определяющим развитие интоксикации. Примером могут быть хлоруглеводороды. Так, тетрахлоралканы тормозят включение метионина и лизина в сывороточные белки и белки печени.

Имеет место и иной механизм : в процессе метаболизма ксенобиотиков образуются активные радикалы и перекиси, воздействующие на фосфолипиды мембран эндоплазматического ретикулума и повреждающие их, что и способствует нарушению синтеза белка. В частности, ингаляция дихлорэтана ведет к торможению включения лейцина в белки печени мышей и обусловливает повреждение полирибосомных структур гепатоцитов. При силикозе в легких тормозится синтез макрофагального белка; при хроническом бериллиозе нарушаются процессы включения аминокислот в белки легких, Под воздействием свинца угнетается использование метионина для синтеза белка; подавляется этот процесс и ртутьорганическими соединениями.

Вторая группа ксенобиотиков включает соединения, непосредственно ингибирующие белковый синтез либо вмешиваясь в процессы транскрипции, либо в процессы трансляции. Значительная часть ксенобиотиков нарушает процессы транскрипции, повреждая матрицу, т.е. ДНК. Под их влиянием нарушаются ковалентные связи между нуклеотидами и модифицируются их функциональные группы за счет образования комплексов, выпадения или разрушения участков цепи ДНК. Именно так действуют алкилирующие соединения. Блокирует ДНК большая группа антибиотиков. Матричные свойства ДНК повреждает большой класс ксенобиотиков акридинового ряда, интеркалируя между основаниями нуклеиновых кислот.

В результате снижается синтез мРНК (матричная рибонуклеиновая кислота) и угнетается биосинтез белка. Аманитины, продукты ядовитых грибов рода Amanita, нарушают транскрипцию путем угнетения активности РНК-полимеразы, что также приводит к подавлению синтеза белка.

Ксенобиотики , нарушающие трансляцию, могут быть подразделены на группы в зависимости от стадии трансляции, на которую они действуют. Так, например, на стадии инициации процесса трансляции действует дигидроксимасляный альдегид и метилглиоксаль, синтетические анионы - поливинилсульфат, полидекстрансульфат и др., трихотеценовые токсины грибов. При этом механизм их действия может быть различным: алифатические альдегиды блокируют прикрепление мРНК к рибосомам; поливинилсульфат связывается с рибосомами в участке, где прикрепляется мРНК; другие полианионы блокируют взаимодействие рибосомных субъединиц. Ксенобиотики, нарушающие трансляцию на стадии элонгации, также могут иметь разный механизм действия. Например, образование пептидной связи на стадии элонгации блокируется эритромицином и олеандомицином. Дифтерийный токсин нарушает транслокацию. Несколько иным способом нарушают транслокацию циклогексимид и его производные. На стадии терминации процесса трансляции действует тенуазоновая кислота, подавляющая отделение новообразованных белков от рибосом.

В заключении рассмотрения нарушения синтеза белка ксенобиотиками укажем на возможность подавления процессов активирования аминокислот и угнетения активности аминоацил-тРНК-синтетаз. К веществам, действующим именно таким образом, в первую очередь относятся синтетические аналоги природных аминокислот, например 5-метилтриптофан, 2-метилгистидин, метилгомоцистеин, цисфторпролин, фторфенилаланин, этионин, канаванин и др. Эти ксенобиотики тормозят включение в белки природных аминокислот за счет конкурентного ингибирования соответствующих аминоацилсинтетаз.

Общебиологическим механизмом реализации токсических эффектов является также нарушение биоэнергетических процессов, обычно связанное с митохондриальным структурно-метаболическим комплексом.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.