Варианты наддува двигателей внутреннего сгорания. Системы наддува двс

Наддув позволяет повысить мощность двигателя за счет увеличения плотности воздуха на входе в цилиндры, что дает возможность эффективно сжигать большее количество топлива. В двигателях автотракторной техники применяются системы газотурбинного наддува с использованием турбокомпрессоров (ТКР) или механического наддува, применяя приводные нагнетатели (ПН). В ТКР воздух сжимается компрессором, приводимым турбиной, а турбина вращается потоком отработавших газов (см. рис. 7.22). ПН, сжимая воздух, приводится от коленчатого вала двигателя.

Турбокомпрессор двигателя автранспортной техники (рис. 7.26) представляет собой агрегат, состоящий из корпуса и ротора (турбины и компрессора, объединенных валом, вращающимся в подшипниках скольжения). ТКР может содержать элементы управления его работой. Обычно наружный диаметр колес центробежных компрессоров и радиально-осевых турбин ТКР 35...90 мм, что обеспечивает достаточно высокий КПД. Колеса компрессоров изготавливаются из алюминиевого сплава, а колеса турбин - из высоколегированного чугуна, так как они должны выдерживать высокие температуры. ОГ поступают в спиральный корпус турбины 6. В нем расположены один или два суживающихся направляющих канала, в которых увеличивается скорость ОГ. Затем они подаются на лопатки колеса турбины 7, вызывая ее вращение. Она через вал 11 приводит во вращение колесо компрессора 2. Воздух через впускной патрубок компрессора 1 поступает на вход в колесо компрессора 2 , где под действием центробежных сил его скорость резко увеличивается, и выходит из колеса в диффузор, где его скорость уменьшается, а плотность растет. Затем воздух 4 поступает в спиральный сборник корпуса компрессора, откуда направляется в двигатель.

Рис. 7.26.

1 - корпус компрессора; 2 - колесо компрессора; 3 - вход воздуха; 4 - выход воздуха, сжатого в компрессоре; 5 - подвод масла; 6 - корпус турбины; 7- колесо турбины; 8- выход ОГ после турбины; 9- корпус подшипников; 10- вход ОГ из двигателя; 11 - вал ротора; 12 - отвод масла

Приводной нагнетатель типа «Руте» в виде двух связанных шестеренками роторов в форме восьмерок, вращающихся в разные стороны, представлен на рис. 7.27. Роторы поочередно подходят к верхним кромкам корпуса и захватывают объем воздуха V, имеющего атмосферное давление р 0 . Это количество воздуха, практически не меняя давления, выталкивается в выходную камеру ПН, где находится заряд с повышенным давлением р к. При сообщении объема V с выходной камерой находящийся заряд поступает в нее под давлением р к. Уплотнение между роторами, а также роторами и стенками корпуса достигается созданием минимального зазора. При больших давлениях наддува на высоких частотах вращения утечки становятся значительными, что снижает степень повышения давления и КПД нагнетателя. Поэтому максимальная степень повышения давления в таком нагнетателе не превышает 1,6... 1,7.

Сравнение турбокомпрессора и приводного нагнетателя. ТКР значительно шире применяется для наддува автотракторной техники, чем ПН, так как обеспечивает более высокое давление наддува и лучшую экономичность, меньший уровень шума, меньшие массу и габариты.

Рис. 7.27.

Худшая экономичность ПН в отличие от ТКР, приводимого энергией отработавших газов, обусловлена тем, что ПН работает от коленчатого вала. Будучи жестко связанным с коленчатым валом, ПН обеспечивает более высокое давление наддува на малых частотах вращения и в отличие от ТКР не имеет задержки раскрутки ротора при резком увеличении нагрузки двигателя («турбоямы»). Это обеспечивает лучшую динамику автомобилей с ПН, особенно на начальном участке разгона. На малых нагрузках мощность на привод ПН не уменьшается, что делает применение ПН особенно невыгодным. ПН, отключаемый на малых нагрузках и больших частотах вращения, обычно используют на бензиновых двигателях легковых автомобилей, для которых важна динамика разгона, а ухудшение экономичности не имеет большого значения.

Охладители наддувочного воздуха (ОНВ). Для двигателей автотракторных средств при сжатии воздуха в компрессоре повышение температуры обычно составляет 40... 180 °С. При промежуточном охлаждении воздуха в ОНВ повышается массовое наполнение цилиндров за счет увеличения плотности воздуха, что обеспечивает повышение мощности и улучшение экономичности двигателя. Применение ОНВ также снижает температуру деталей двигателя и температуру газов перед турбиной.

На двигателях автотракторной техники применяются воздухо-воздушные и жидкостно-воздушные ОНВ. В первом случае надувочный воздух охлаждается за счет обдува ОНВ потоком встречного воздуха при движении автомобиля и потоком, создаваемым вентилятором, а во втором - в основном используется жидкость из системы охлаждения двигателя.

Жидкостно-воздушный ОНВ более компактен, чем воздухо-воздушный. Это обусловлено тем, что теплообмен от горячего воздуха к охлаждающей жидкости происходит интенсивнее, чем к охлаждающему воздуху. Этот теплообменник обеспечивает стабильную температуру надувочного воздуха независимо от температуры окружающей среды. Он в основном устанавливается на автомобилях высокой проходимости, тягачах и специальных автомобилях (карьерных самосвалах, аэродромной технике и т.д.).

Воздухо-воздушный ОН В обеспечивает более глубокое охлаждение вследствие того, что температура атмосферного воздуха ниже температуры жидкости системы охлаждения. Поэтому он используется при невысоких степенях форсирования наддувом и при наличии встречного потока воздуха, что относится к двигателям легковых автомобилей и магистральных грузовиков.

Системы регулирования наддува. При увеличении частоты вращения двигателя давление наддува ТКР повышается в 1,3...1,5 раза. Это связано с различием гидравлических характеристик поршневых (двигатель) и лопаточных (ТКР) машин. Идеально можно настроить ТКР только на один режим работы двигателя (обычно это точка внешней скоростной характеристики, расположенная между режимами максимального крутящего момента и номинальной мощности), при котором он будет обеспечивать заданное давление наддува и иметь наибольший КПД. Тогда при снижении частоты вращения давление наддува будет падать по отношению к оптимальному, а при повышении частоты вращения - увеличиваться. Для решения этих проблем на двигателях применяются различные способы регулирования наддува.

Перепуск ОГ, минуя турбину, - наиболее простой способ согласования работы двигателя и ТКР (рис. 7.28). ТКР настраивается так, чтобы обеспечить высокое давление наддува на малых и средних частотах вращения дизеля, а на высокой частоте вращения дальнейший рост давления ограничивается путем открытия перепускного клапана 5. Он устанавливается на входе в турбину 8. При его открытии часть газа направляется, минуя турбину, в выпускную систему. Система управления двигателем регулирует величину открытия клапана, обеспечивая требуемое давление наддува на каждом режиме работы. Однако при открытом перепускном клапане снижается экономичность двигателя, так как теряется часть энергии, затрачиваемой на сжатие воздуха в компрессоре ТКР.

Изменение проходного сечения поворотными лопатками на входе ОГ в колесо турбины. На малой частоте вращения поворотные лопатки 3 на входе в турбину 1 при малой частоте вращения (рис. 7.29, а) повернуты на максимальный угол, обеспечивая минимальное проходное сечение на входе ОГ в колесо турбины 1. Тогда скорость газа на входе в колесо будет увеличиваться, что повышает частоту вращения ротора ТКР

Рис. 7.28.

  • 1 - электромагнитный клапан; 2 - вакуумный насос; 3 - вакуумная камера; 4 - ТКР; 5 - клапан перепуска ОТ; 6 - вход ОТ из двигателя;
  • 7 - выход сжатого воздуха; 8 - турбина; 9 - компрессор

и, соответственно, давление наддува. При большой частоте вращения двигателя (рис. 7.29, б) лопатки 3 повернуты на минимальный угол, обеспечивая максимальное проходное сечение на входе ОГ в колесо турбины 1. Тогда скорость газа на входе в колесо турбины снижается, что предотвращает повышение давления наддува. При этом снижается противодавление на выпуске из цилиндров, что приводит к уменьшению работы выталкивания и, как следствие, к повышению мощности и экономичности дизеля. При этом способе регулирования на малоразмерных ТКР значительно снижается КПД турбины из-за увеличения сопротивления, создаваемого лопатками на пути движения потока газа, и потери, связанные с утечками через зазоры между лопатками и стенками корпуса турбины. Также имеются сложности обеспечения работоспособности поворотных лопаток в условиях отложения сажи. Поэтому ТКР с таким способом регулирования применяются на двигателях легковых автомобилей с рабочим объемом больше двух литров.

Изменение проходного сечения для подвода О Гк колесу турбины скользящей втулкой в сопловом направляющем аппарате турбины. В ТКР (рис. 7.30) перемещающаяся горизонтально скользящая втулка Сможет закрывать один из двух каналов, расположенных в корпусе турбины и подводящих ОТ к ее колесу. Это изменяет проходное сечение и, соответственно, скорость входа газа на лопатки турбины. Если открыт

Рис. 7.29. Регулирование турбины ТКР поворотом лопаток: а - закрытое положение лопаток, минимальное проходное сечение и максимальная скорость входа газа на колесо турбины; б - открытое положение лопаток, максимальное проходное сечение и минимальная скорость входа газа на колесо турбины; 1 - колесо турбины;

2 - поворотное кольцо; 3 - поворотная лопатка; 4 - приводной рычажок; 5 - пневматический регулятор; 6 - поток отработавших газов только один канал 2 (рис. 7.30, а), сечение на пути движения потока газа минимально, скорость газа максимальна, давление наддува повышается. Если открыты оба канала 2 и 3 (рис. 7.30, б), то проходное сечение максимально, а скорость газа минимальна. При этом давление наддува уменьшается, а противодавление на выпуске из цилиндров снижается. Данный способ регулирования позволяет применять ТКР с малыми диаметрами колес, который можно использовать на двигателях малого рабочего объема.

Рис. 7.30. Регулирование турбины ТКР скользящей втулкой: а - открыт только один канал, подводящий газы, в корпусе турбины; б - открыты оба канала, подводящие газы, в корпусе турбины; 1 - колесо турбины; 2 - первый канал в корпусе турбины; 3 - второй канал в корпусе турбины; 4 - скользящая втулка; 5 - перепускной канал; 6 - привод скользящей втулки

Со времени, когда очевидной стала необходимость применения наддува двигателей, появилось множество вариантов наддува. Основными видами наддува являются следующие:

Рисунок 1- Виды наддува

Системы наддува можно квалифицировать по:

1) способу подачи воздуха без нагнетателя за счет инерции столба самого воздуха или газа;

2) конструкции нагнетателя;

3) виду привода нагнетателя;

4) типу связи между наддувочным агрегатом и двигателем.

Инерционный наддув (без нагнетателя, называемый еще «резонансным», «волновым», «акустическим») осуществляется за счет колебания давления во впускном трубопроводе поршневого двигателя. Волна понижения давления во впускном трубопроводе у входа в цилиндр во время такта впуска со скоростью звука перемещается до противоположного открытого конца трубопровода, отражается от него и в виде волны давления движется опять же со скоростью звука ко впускному клапану. Выбирая длину трубопровода таким образом, чтобы волна давления подходила к заключительному периоду впуска, можно обеспечить подачу заряда в цилиндр под избыточным давлением, осуществляя тем самым наддув двигателя (Рисунок 2).


Рисунок 2- Схема впускного тракта 1- корпус воздухоочистителя или специальный резонатор

Необходимую для этого длину трубопровода l можно рассчитать по времени ф прохождения волны от клапана к открытому концу трубопровода и обратно.

Энергия для «разгона» столба воздуха во впускном трубопроводе берется за счет дополнительной работы поршня, т.е. за счет повышения насосных и механических потерь двигателя.

Инерционный наддув как самостоятельная система наддува применяется в двигателях легковых автомобилей. Длина впускного трубопровода может изменяться в зависимости от скоростного режима двигателя, обеспечивая тем самым высокое наполнение цилиндров двигателя в широком диапазоне режимов.

В сочетании с газотурбинным наддувом инерционный наддув применялся в дизелях грузовых автомобилей -- система комбинированного наддува Шера (Рисунок 3).

Уровень повышения давления наддува при инерционном наддуве сравнительно невелик, поэтому такие системы обычно используются не для повышения максимальной мощности двигателя, а для улучшения протекания характеристики крутящего момента.


Рисунок 3- Система комбинированного наддува, предложенная Г. Шером

Другой известный способ подачи воздуха в цилиндры двигателя под повышенным давлением -- это использование волн давления выпускных газов в газодинамической машине «Компрекс» (наименование «Comprex» происходит от английских слов compression - сжатие и expanding - расширение) (Рисунок 4).

Принцип действия этой системы основан на том, что волна давления, проходящая через канал трубопровода, отражается на свободном конце отрицательно, т.е. как волна разрежения, а на закрытом конце как волна давления, и, наоборот, всасывающая волна на открытом конце отражается как волна давления, а на закрытом конце -- как волна всасывающая.

Система «Компрекс» состоит из ротора с осевыми каналами -- ячейками трапецеидального сечения, открытыми с торцов. Ротор, укрепленный в подшипниках и окруженный кожухом, приводится во вращение через ременную передачу от коленчатого вала двигателя. Мощность, необходимая для вращения ротора, невелика, т.к. она расходуется только на преодоление трения в подшипниках и вентиляционных потерь.


Рисунок 4- Схема устройства системы наддува «Компрекс» 1 -- выпускной трубопровод; 2 -- впускной трубопровод; ВНД -- воздух низкого давления; ВВД -- воздух высокого давления; ГВД -- газ высокого давления; ГНД -- газ низкого давления; Р -- ротор.

Воздушные и газовые каналы сходятся на торцевых сторонах корпуса. Осевые каналы -- ячейки ротора -- совпадают поочередно то с торцевыми стенками корпуса нагнетателя, то с впускными или выпускными трубопроводами, ведущими либо к двигателю, либо к атмосфере через воздухоочиститель или глушитель.

Привод агрегатов наддува может осуществляться:

  • 1) от коленчатого вала ДВС прямо или через отключаемое устройство («приводные нагнетатели»);
  • 2) от постороннего источника энергии, например, так называемый «е-привод» - от электродвигателя («электроподдерживаемый наддув»);

3) от турбины, использующей энергию отработавших газов ДВС (турбокомпрессоры).

В качестве приводных нагнетателей используют либо объемные нагнетатели (поршневые, роторно-шестеренчатые (типа «Рутс»), роторновинтовые, роторно-пластинчатые (шиберные)), либо лопаточные (как правило, центробежные). В приводном нагнетателе типа «Рутс» (Рисунок 5) два ротора особой формы, оси которых связаны между собой, при помощи шестерен соединенные с ведущей шестеренкой нагнетателя, которая, в свою очередь, связана со шкивом, приводимым в движение коленчатым валом посредством ременчатой передачи. Вращающиеся в противоположных направлениях роторы буквально «всасывают» воздух через входное отверстие, проталкивая воздушные потоки в т. н. распределительный отсек.


Рисунок 5- Приводной нагнетатель типа «Рутс»

Другой представитель механических нагнетателей - винтовой (нагнетатель Линхольма) по своей форме и структуре очень похож на нагнетатель Рутса (Рисунок 6), но на поверку отличается от него кардинально.

Рисунок 6- Приводной нагнетатель Линхольма

Формы роторов винтового нагнетателя более заострены, а сами они напоминают саморезы или винты мясорубки. При вращении роторов воздух, попадающий внутрь нагнетателя, прогоняется через этот конвейер спиралей и к выходу из корпуса уже находится в сжатом состоянии. Кроме того, воздух сжимается уже внутри устройства, а это значит, что неоткуда будет взяться тем силам противодействия, что выталкивают воздух назад в нагнетателе типа «Рутс».

Приводные центробежные нагнетатели (Рисунок 7) выполнены в форме улитки и обладают примерно теми же свойствами, что и турбины.


Рисунок 7- Приводной центробежный нагнетатель

Воздух, попадая в корпус нагнетателя, подхватывается лопастями рабочего колеса и, раскручиваясь, центробежными силами прижимается к внешним стенкам корпуса. На этом этапе воздушный поток достигает огромной скорости, но пока его давление слишком мало. Затем при помощи диффузора достигается обратный эффект: при выходе из нагнетателя скорость воздушного потока уменьшается, а давление, наоборот, возрастает, за счет «поджимающего» сзади воздуха. Эффективность центробежных нагнетателей пропорциональна оборотам двигателя. На низких оборотах прирост мощности практически не ощущается (хотя он и больше, чем у той же турбины), зато на средних и высоких мощность взмывает вверх.

Двигатели с газотурбинным наддувом часто называют «турбопоршневыми двигателями» или «комбинированными двигателями».

У турбокомпрессора (Рисунок 8) колесо компрессора и колесо турбины сидят на одном валу. Энергия потока отработавших газов, которая в обычных двигателях не используется, преобразовывается здесь в крутящий момент - выходящие из цилиндров двигателя отработавшие газы подаются на колесо турбины, где их кинетическая энергия преобразуется в механическую энергию вращения (крутящий момент). Колесо компрессора засасывает свежий воздух через воздушный фильтр, сжимает его и подает в цилиндры двигателя. Количество топлива, которое можно смешать с воздухом, при этом можно увеличить, что позволяет двигателю развивать большую мощность. Существует также множество других конструкций турбокомпрессоров.


Рисунок 8- Турбокомпрессор

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

2. Виды наддува

3. Преимущества и недостатки различных видов наддува

4. Пределы повышения мощности путем наддува

Используемая литература

Введение

Одним из актуальных вопросов современного мирового и отечественного автомобильного и тракторного двигателестроения является вопрос производства в России эффективных и надежных турбокомпрессоров, не- обходимых для выпуска двигателей, удовлетворяющих экологическим требованиям Евро-3 и выше.

В 90-е годы сформировалась и полностью апробирована ведущими мировыми производителями и разработчиками дизельных двигателей концепция о том, что система турбонаддува является неотъемлемым компонентом современного экологически чистого двигателя. При этом турбо- наддув, в отличие от 70-80-х годов, перестал рассматриваться как средство форсирования двигателей и практически 100% современных базовых моделей проектируются и разрабатываются только с наддувом. Экологические приоритеты при разработке в настоящее время дизелей являются определяющими, а требования по выполнению все время ужесточающихся норм приводят к пересмотру уже утвердившихся подходов к разработке двигателей, а также систем и агрегатов наддува. Изменения эти происходят во всем мире очень динамично и устоявшиеся в течение десятилетий подходы рушатся на наших глазах при переходе от норм Евро-2 к Евро-3, а перспективные требования по экологии на 10-15 лет вперед резко активизировали исследования по созданию и оптимизации систем и агрегатов наддува.

наддув двигатель агрегатный мощность

1. Наддув

Наддув -- увеличение количества свежего заряда горючей смеси, подаваемой в двигатель внутреннего сгорания, за счёт повышения давления при впуске. Наддув обычно применяют с целью повышения мощности (на 20-45 %) без увеличения массы и габаритов двигателя, а также для компенсации падения мощности в условиях высокогорья. Наддув с «качественным регулированием» может применяться для снижения токсичности и дымности отработавших газов. Агрегатный наддув осуществляется с помощью компрессора, турбокомпрессора или комбинированно. Наибольшее распространение получил наддув с помощью турбокомпрессора, для привода которого используется энергия отработавших газов.

Агрегатный наддув применяют почти на всех видах транспортных дизелей (судовых, тепловозных, тракторных). Наддув на карбюраторных двигателях ограничивается возникновением детонации. К основным недостаткам агрегатного наддува относят:

· повышение механической и тепловой напряжённости двигателя вследствие увеличения давления и температуры газов;

· снижение экономичности;

· усложнение конструкции.

Всё большее распространение на транспортных двигателях внутреннего сгорания получает динамический наддув, который при несущественных изменениях в конструкции трубопроводов приводит к повышению коэффициента наполнения до в широком диапазоне изменения частоты вращения двигателя. Увеличение при наддуве позволяет форсировать дизель по энергетическим показателям в случае одновременного увеличения цикловой подачи топлива или улучшить экономические показатели при сохранении мощностных (при той же цикловой подаче топлива). Динамический наддув повышает долговечность деталей цилиндро-поршневой группы благодаря более низким тепловым режимам при работе на бедных смесях.

2. Виды наддува

Со времени, когда очевидной стала необходимость применения наддува двигателей, появилось множество вариантов наддува. Основными видами наддува являются следующие:

Рисунок 1- Виды наддува

Системы наддува можно квалифицировать по:

1) способу подачи воздуха без нагнетателя за счет инерции столба самого воздуха или газа;

2) конструкции нагнетателя;

3) виду привода нагнетателя;

4) типу связи между наддувочным агрегатом и двигателем.

Инерционный наддув (без нагнетателя, называемый еще «резонансным», «волновым», «акустическим») осуществляется за счет колебания давления во впускном трубопроводе поршневого двигателя. Волна понижения давления во впускном трубопроводе у входа в цилиндр во время такта впуска со скоростью звука перемещается до противоположного открытого конца трубопровода, отражается от него и в виде волны давления движется опять же со скоростью звука ко впускному клапану. Выбирая длину трубопровода таким образом, чтобы волна давления подходила к заключительному периоду впуска, можно обеспечить подачу заряда в цилиндр под избыточным давлением, осуществляя тем самым наддув двигателя (Рисунок 2).

Рисунок 2- Схема впускного тракта 1- корпус воздухоочистителя или специальный резонатор

Необходимую для этого длину трубопровода l можно рассчитать по времени ф прохождения волны от клапана к открытому концу трубопровода и обратно.

Энергия для «разгона» столба воздуха во впускном трубопроводе берется за счет дополнительной работы поршня, т.е. за счет повышения насосных и механических потерь двигателя.

Инерционный наддув как самостоятельная система наддува применяется в двигателях легковых автомобилей. Длина впускного трубопровода может изменяться в зависимости от скоростного режима двигателя, обеспечивая тем самым высокое наполнение цилиндров двигателя в широком диапазоне режимов.

В сочетании с газотурбинным наддувом инерционный наддув применялся в дизелях грузовых автомобилей -- система комбинированного наддува Шера (Рисунок 3).

Уровень повышения давления наддува при инерционном наддуве сравнительно невелик, поэтому такие системы обычно используются не для повышения максимальной мощности двигателя, а для улучшения протекания характеристики крутящего момента.

Рисунок 3- Система комбинированного наддува, предложенная Г. Шером

Другой известный способ подачи воздуха в цилиндры двигателя под повышенным давлением -- это использование волн давления выпускных газов в газодинамической машине «Компрекс» (наименование «Comprex» происходит от английских слов compression - сжатие и expanding - расширение) (Рисунок 4).

Принцип действия этой системы основан на том, что волна давления, проходящая через канал трубопровода, отражается на свободном конце отрицательно, т.е. как волна разрежения, а на закрытом конце как волна давления, и, наоборот, всасывающая волна на открытом конце отражается как волна давления, а на закрытом конце -- как волна всасывающая.

Система «Компрекс» состоит из ротора с осевыми каналами -- ячейками трапецеидального сечения, открытыми с торцов. Ротор, укрепленный в подшипниках и окруженный кожухом, приводится во вращение через ременную передачу от коленчатого вала двигателя. Мощность, необходимая для вращения ротора, невелика, т.к. она расходуется только на преодоление трения в подшипниках и вентиляционных потерь.

Рисунок 4- Схема устройства системы наддува «Компрекс» 1 -- выпускной трубопровод; 2 -- впускной трубопровод; ВНД -- воздух низкого давления; ВВД -- воздух высокого давления; ГВД -- газ высокого давления; ГНД -- газ низкого давления; Р -- ротор.

Воздушные и газовые каналы сходятся на торцевых сторонах корпуса. Осевые каналы -- ячейки ротора -- совпадают поочередно то с торцевыми стенками корпуса нагнетателя, то с впускными или выпускными трубопроводами, ведущими либо к двигателю, либо к атмосфере через воздухоочиститель или глушитель.

Привод агрегатов наддува может осуществляться:

1) от коленчатого вала ДВС прямо или через отключаемое устройство («приводные нагнетатели»);

2) от постороннего источника энергии, например, так называемый «е-привод» - от электродвигателя («электроподдерживаемый наддув»);

3) от турбины, использующей энергию отработавших газов ДВС (турбокомпрессоры).

В качестве приводных нагнетателей используют либо объемные нагнетатели (поршневые, роторно-шестеренчатые (типа «Рутс»), роторновинтовые, роторно-пластинчатые (шиберные)), либо лопаточные (как правило, центробежные). В приводном нагнетателе типа «Рутс» (Рисунок 5) два ротора особой формы, оси которых связаны между собой, при помощи шестерен соединенные с ведущей шестеренкой нагнетателя, которая, в свою очередь, связана со шкивом, приводимым в движение коленчатым валом посредством ременчатой передачи. Вращающиеся в противоположных направлениях роторы буквально «всасывают» воздух через входное отверстие, проталкивая воздушные потоки в т. н. распределительный отсек.

Рисунок 5- Приводной нагнетатель типа «Рутс»

Другой представитель механических нагнетателей - винтовой (нагнетатель Линхольма) по своей форме и структуре очень похож на нагнетатель Рутса (Рисунок 6), но на поверку отличается от него кардинально.

Рисунок 6- Приводной нагнетатель Линхольма

Формы роторов винтового нагнетателя более заострены, а сами они напоминают саморезы или винты мясорубки. При вращении роторов воздух, попадающий внутрь нагнетателя, прогоняется через этот конвейер спиралей и к выходу из корпуса уже находится в сжатом состоянии. Кроме того, воздух сжимается уже внутри устройства, а это значит, что неоткуда будет взяться тем силам противодействия, что выталкивают воздух назад в нагнетателе типа «Рутс».

Приводные центробежные нагнетатели (Рисунок 7) выполнены в форме улитки и обладают примерно теми же свойствами, что и турбины.

Рисунок 7- Приводной центробежный нагнетатель

Воздух, попадая в корпус нагнетателя, подхватывается лопастями рабочего колеса и, раскручиваясь, центробежными силами прижимается к внешним стенкам корпуса. На этом этапе воздушный поток достигает огромной скорости, но пока его давление слишком мало. Затем при помощи диффузора достигается обратный эффект: при выходе из нагнетателя скорость воздушного потока уменьшается, а давление, наоборот, возрастает, за счет «поджимающего» сзади воздуха. Эффективность центробежных нагнетателей пропорциональна оборотам двигателя. На низких оборотах прирост мощности практически не ощущается (хотя он и больше, чем у той же турбины), зато на средних и высоких мощность взмывает вверх.

Двигатели с газотурбинным наддувом часто называют «турбопоршневыми двигателями» или «комбинированными двигателями».

У турбокомпрессора (Рисунок 8) колесо компрессора и колесо турбины сидят на одном валу. Энергия потока отработавших газов, которая в обычных двигателях не используется, преобразовывается здесь в крутящий момент - выходящие из цилиндров двигателя отработавшие газы подаются на колесо турбины, где их кинетическая энергия преобразуется в механическую энергию вращения (крутящий момент). Колесо компрессора засасывает свежий воздух через воздушный фильтр, сжимает его и подает в цилиндры двигателя. Количество топлива, которое можно смешать с воздухом, при этом можно увеличить, что позволяет двигателю развивать большую мощность. Существует также множество других конструкций турбокомпрессоров.

Рисунок 8- Турбокомпрессор

3. Преимущества и недостатки различных видов наддува

Наддув приводными объемными нагнетателями обеспечивает быстрое реагирование на изменение скоростного режима двигателя.

Недостатки способа -- большие механические потери на малых нагрузках, сравнительно большие размеры и масса агрегатов наддува, наличие механической передачи, зачастую сложность размещения на двигателе. В значительной мере это относится и к центробежным приводным нагнетателям. Для наиболее рационального использования приводных объемных нагнетателей необходимо устройство, обеспечивающее отключение их от двигателя при малых нагрузках, когда нет необходимости в наддуве. Кроме того, механические нагнетатели снижают к.п.д. двигателя, т.к. на их привод расходуется часть мощности силового агрегата.

К достоинствам объемного нагнетателя типа «Рутс» относятся высокая эффективность на малых и средних оборотах, долговечность конструкции и низкий шум. Однако, при достижении определенного давления воздух начинает просачиваться назад, снижая к.п.д. системы.

Винтовые нагнетатели типа «Лисхольм» эффективны практически во всем диапазоне оборотов двигателя, компактны, бесшумны, но очень сложны в изготовлении, следовательно, дороги.

Волновые обменники «Компрекс» хотя и обеспечивают быстрое реагирование на изменение режима ДВС, не способны развивать высокие давления наддува, громоздки, требуют механического привода.

Наиболее удачным оказался газотурбинный наддув в широком диапазоне размеров ДВС от мотоциклетных до судовых мощностью в десятки тысяч киловатт. Преимущества этого вида наддува: более полное использование энергии топлива за счет расширения полезной площади термодинамического цикла, автоматическая подстройка (хотя и не всегда достаточная для транспортных двигателей) к изменению режима работы ДВС, сравнительно малые размеры и масса, относительная свобода размещения на двигателе. Недостатки турбонаддува - ухудшение приемистости двигателя -- в значительной мере нивелируются применением специальных мер регулирования давления наддува, уменьшением инерции вращающихся частей турбокомпрессоров.

4. Пределы повышения мощности путем наддува

Уменьшение теплоиспользования и механического к. п. д. приводит к тому, что мощность увеличивается медленнее, чем давление наддува"; в частности, при переходе от питания без наддува к питанию с наддувом 2 ата мощность увеличивается не вдвое, а приблизительно на 80%.

Отсюда возникает вопрос, каков целесообразный предел повышения давления наддува и не наступит ли такой момент, когда улучшение наполнения окажется не в состоянии компенсировать затрату мощности на нагнетатель и ухудшение теплоиспользования.

Результаты аналитического исследования этой проблемы подтверждают такие опасения и могут быть представлены графически (рис. 77).

Кривая р е дает изменение среднего эффективного давления в зависимости от давления наддува, отложенного по оси абсцисс, без учета затраты мощности на привод нагнетателя. Кривая р ек изображает часть среднего эффективного давления, затрачиваемого на привод; нагнетателя, также в зависимости от давления: наддува. Как видно по графику, рост р ек вначале отстает от роста р е, а при дальнейшем увеличении давления наддува разрыв между этими величинами быстро уменьшается. Чтобы получить среднее эффективное давление, соответствующее эффективной мощности двигателя, достаточно отнять от ординат кривой р е ординаты кривой р ек. Тогда получим кривую р е. изменения среднего эффективного давления двигателя в зависимости от давления наддува. Точкой перегиба а определяется наивыгоднейшее давление наддува -- около 5 ата, при котором среднееэффективное давление и мощность достигают максимума. График рис. 77 построен из расчета сохранения конечного давления сжатия равным 16,7 am при4 различных давлениях наддува; это соответствует степени сжатия е = 7,5 для двигателя без наддува. Повышенным давлениям наддува соответствуют уменьшенные степени сжатия; для критического давления наддува 5 атм степень сжатия е = 2,3. Кроме конечного давления сжатия, в основу графика положены еще другие конкретные данные. Поэтому нельзя считать 5 атм наивыгоднейшим давлением наддува для всех типов двигателей. Точные вычисления критического давления наддува вообще едва ли возможны, так как весьма трудно» учесть все условия работы машины, свойства топлива и тем более конструктивные особенности двигателя. Поэтому рис. 77 приводится только для того, чтобы показать существование предела увеличения мощности двигателя, снабженного приводным нагнетателем. В настоящее время применяются более низкие давления наддува по сравнению с предельным; значением, полученным на графике.

Следует заметить, что даже если не учитывать потерю мощности на привод нагнетателя, мощность двигателя все же не будет повышаться безгранично, так как чем сильнее сжимают горючую смесь в нагнетателе, тем меньшую степень сжатия можно использовать в двигателе при определенной детонационной стойкости топлива и, следовательно, в предельном случае все сжатие смеси происходит в нагнетателе, а степень сжатия (и степень: расширения) двигателя равна единице; при этом мощность двигателя равна нулю.

Таким образом, улучшение наполнения при наддуве компенсирует ухудшение термического к. п. д. и затрату мощности на нагнетатель только до некоторого значения давления наддува.

Вывод

Итак: цель наддува ДВС -- повышение его удельной (отнесенной к единице рабочего объема цилиндров, массы, габаритов) мощности за счет увеличения подачи топлива и соответственно требуемой для его сгорания массы воздуха. Увеличение удельной мощности ДВС позволяет сохранить его размеры и массу, стоимость, а также размеры и массу транспортного средства, на котором установлен двигатель, увеличить грузоподъемность, скорость.

Наддув ДВС с искровым зажиганием, как правило, с охлаждением наддувочного воздуха, повышает удельную мощность ДВС и улучшает динамические качества автомобиля.

В ряде стран автомобили с двигателями с наддувом и малым рабочим объемом цилиндров облагаются меньшими налогами. Увеличение коэффициента избытка воздуха при наддуве дизелей (особенно с охлаждением наддувочного воздуха) позволяет повысить эффективный к.п.д. (снизить удельный расход топлива) двигателя, а главное - уменьшить вредные выбросы с отработавшими газами.

Газотурбинный наддув уменьшает шум выпуска.

Использованная литература

1.Б.Н. Давыдков В.Н. Каминский Системы и агрегаты наддува транспортных двигателей- учебное пособие Москва 2011 год

2. wikipedia.org/wiki/Наддув

Размещено на Allbest.ru

...

Подобные документы

    Улучшение топливных, энергетических и ресурсных показателей автотракторных двигателей. Характеристика дизеля Д-245, обоснование системы наддува. Определение индикаторных и эффективных показателей двигателя. Схема и режимы работы системы наддува дизеля.

    дипломная работа , добавлен 18.11.2011

    Выбор давления наддува и схемы воздухоснабжения дизеля. Процесс наполнения цилиндра. Цикл Миллера. Расчетное среднее индикаторное давление. Эффективные показатели работы двигателя. Определение мощности агрегатов наддува. Кривошипно-шатунный механизм.

    курсовая работа , добавлен 06.01.2017

    Общая характеристика и принцип работы системы наддува отработанных газов дизеля М-756, его устройство и основные элементы. Порядок разборки, ремонта и сборки турбокомпрессора, впускных и выпускных коллекторов. Техника безопасности при проведении работ.

    курсовая работа , добавлен 19.05.2009

    Общая характеристика судовых двигателей внутреннего сгорания, описание конструкции и технические данные двигателя L21/31. Расчет рабочего цикла и процесса газообмена, особенности системы наддува. Детальное изучение топливной аппаратуры судовых двигателей.

    курсовая работа , добавлен 26.03.2011

    Особенности электростартерного пуска, его стадии, факторы влияния, устройства облегчения. Анализ внутрицилиндровых процессов. Расчеты ожидаемых параметров по температуре конца сжатия. Функциональная схема и принцип работы пускового наддува, его описание.

    дипломная работа , добавлен 23.03.2012

    Общие сведения о наддуве в дизельных двигателях. Контроль и диагностика процессов воздухоснабжения. Характеристика газотурбинного наддува четырехтактного дизеля. Регулировки, неисправности дизельных двигателей с турбонаддувом и способы их устранения.

    курсовая работа , добавлен 01.09.2012

    Общие принципы работы тепловозных дизелей. Идеальный цикл Карно. Схемы устройства, принципов работы и индикаторные диаграммы четырехтактного дизеля. Дизельное топливо и варианты наддува цилиндров. Состав сырой нефти. Схема роторного нагнетателя воздуха.

    курсовая работа , добавлен 27.07.2013

    Обоснование основных размеров D и S и числа цилиндров и дизеля. Расчет процесса наполнения, сгорания, сжатия и расширения. Расчет систем наддува и процесса газообмена. Индикаторные и эффективные показатели дизеля. Выбор числа и типа турбокомпрессора.

    курсовая работа , добавлен 25.03.2011

    История вопроса и пути совершенствования методов прямого сжигания твердых топлив в поршневых двигателях внутреннего сгорания. Теоретические аспекты выгорания твердого топлива в рабочем пространстве двигателя при его сжигании объемным и слоевым способом.

    книга , добавлен 17.04.2010

    Способы увеличения мощности двигателя: форсирование, увеличение степени сжатия и повышение момента двигателя за счет сдвига пика максимального давления. Переделка дизеля, для создания бензинового двигателя внутреннего сгорания с непосредственным впрыском.

Наддув - «Искусственное дыхание» для двигателя

Подходит к концу «железный» XX век. Наш любимец автомобиль был свидетелем и участником событий этого столетия, совершенствовался и трансформировался вместе с представлениями человека о массовом транспортном средстве. И в преддверии магической цифры 2000 есть смысл поговорить о важнейших технических принципах и решениях, применяемых в конструкции автомобиля, вспомнить об их истории и заглянуть в будущее. Применение наддува для воздухоснабжения двигателей внутреннего сгорания - одна из таких тем. Помимо исторического аспекта, разговор о наддуве имеет и чисто практический смысл - ведь машин, снабженных подобными устройствами, становится все больше и на наших дорогах.

Устройство и принцип работы роторно-шестирёнчатого компрессора типа Roots

НАДДУВ КАК ЛЕКАРСТВО ОТ ВЯЛОСТИ

О том как работает поршневой двигатель внутреннего сгорания, знали еше в прошлом веке. Смесь воздуха и топлива после сжатия в цилиндре воспламеняется, при сгорании расширяется, толкая поршень и совершая полезную работу, и потом в виде отработавших газов вылетает в выхлопную трубу.

Как только на дорогах мира появились тарахтящие безлошадные экипажи с поршневыми моторами, началась борьба конструкторов за повышение мощности двигателей. Экстенсивный метод - сжечь в цилиндрах больше топлива, увеличивая рабочий объем, - повлек за собой появление десяти- и двенадцатилитровых многоцилиндровых монстров. А мысли о том. как интенсифицировать рабочие процессы и снять с двигателя больше лошадиных сил, привели мотористов к идее наддува.

Дело в том, что количество топлива, которое может сгореть в цилиндрах двигателя, жестко связано с объемом воздуха, засасываемого мотором внутрь при впуске. Соотношение масс - примерно 1 кг топлива на 15 кг воздуха - приходилось выдерживать очень строго, поскольку переобогащенная смесь приводила, наоборот, к падению мощности.

Как преодолеть это ограничение? Идея лежит на поверхности: подать в цилиндры больше воздуха, нагнетая его иод избыточным давлением!

Сначала появились приводные, или, иначе говоря, механические нагнетатели (superchargers) - роторного, винтового, поршневого, спирального типов, приводимые во вращение механической передачей от коленчатого вала двигателя. С подобными устройствами экспериментировал еще Готлиб Даймлер - его первые опыты с наддувом относятся к 1885 году - и, голом позже, Рудольф Дизель. Но орешек оказался крепким - и при реализации довольно простой идеи конструкторам пришлось столкнуться с массой технических трудностей.

Как это часто бывает, первыми механический наддув применили военные - на авиационных моторах, чтобы компенсировать ухудшение наполнения цилиндров при высотных полетах. И только после первой мировой войны полученный опыт позволил оснастить приводными нагнетателями бензиновые двигатели сначала гоночных, а потом спортивных и туристических автомобилей. За океаном в 20-х голах компрессорами занимались фирмы Duesenberg. Auburn и Cord, а среди «европейцев» лидировали Bentley. Lancia, Alfa Romeo, Fiat, Bugaiti и, конечно же, Daimler-Benz - спортивные «компрессорные» SS и SSK с отключаемым приводом роторного нагнетателя типа Roots стали мечтой любого коллекционера. Семилитровый шестицилиндровый мотор гоночного родстера SSKL конца 20-х годов с механическим наддувом развивал 300 л. е.! Кстати, эти машины конструировал сам Фердинанд Порше, бывший в ту пору в Штуттгарте техническим директором.

Идея наддува оказалась весьма плодотворной. Увеличиваем давление воздуха на 30% - получаем адекватный рост мощности двигателя. Прибавляем до 50% - снимаем еще больше «лошадей». И так до тех пор, пока... не развалится мотор - ведь сжатие теперь начинается не при атмосферном давлении внутри цилиндров, а при избыточном, и реальная компрессия при работающем нагнетателе будет выше. При этом растет не только мощность, но и тепловая и механическая нагрузка на детали двигателя. И, конечно, рост давления наддува бензиновых моторов сдерживает детонационная стойкость топлива - если компрессия будет слишком большой, то процесс сгорания смеси примет характер взрыва, со всеми вытекающими детонационными «прелестями»...


Компрессор Roots монтировался перед 7-литровой «шестеркой», а его корпус и коллектор были снабжены ребрами -для лучшего охлаждения

Наиболее распространенная в наши дни схема газообмена с турбонаддувом и перепускным клапаном

У механических нагнетателей есть два основных достоинства. Во-первых, это практически безынерционная реакция на изменение подачи топлива и, во-вторых, широкий диапазон оборотов двигателя, при которых такой наддув эффективен. Современные приводные компрессоры славятся тем, что работают с самых «низов», практически с холостых оборотов, поднимая крутящий момент там, где его нехватка ощущается сильнее всего.

Но есть и недостатки. Сравнительная «высокооборотность» приводных нагнетателей (до 20000 об/мин и более) порождает технологические трудности в изготовлении, а довольно большие размеры приводят к компоновочным проблемам: внутри современных моторных отсеков ведь яблоку негде упасть...

А самый главный минус такой схемы в том, что энергия для работы нагнетателя отбирается от коленчатого вала, отнимая пусть небольшую, но все же заметную, около 10%, долю крутящего момента. Конечно, это компенсируется ростом давления наддува, но все же...

ЭНЕРГИЯ ИЗ НИОТКУДА

Приводные компрессоры тех лет были очень сложными и малонадежными. Например, нагнетатель того самого легендарного MercedesBenz SSK.L должен был подключаться только на высоких оборотах (порядка 4000 об/мин) и больших скоростях и только на 20 секунд - чтобы оторваться от соперника или завершить обгон. При этом компрессор издавал душераздирающий визг: его роторы вращались вчетверо быстрее коленчатого вала, быстро сокращая ресурс двигателя и свой собственный. Недаром сэр Бентли, чьи машины были тогда основными соперниками творений Порше на гонках, нагнетатели недолюбливал, но их против его воли ставили на 4,5-литровые моторы по заказам гонщиков.

Таков характер изменения крутящего момента и удельного расхода топлива двигателя ВАЗ-2106 с турбонагнетателем НАМИ (1 - штатный двигатель, 2 - мощностный вариант настройки турбокомпрессора, 3 - экономичный вариант)

Этого недостатка лишен газотурбинный или просто турбонаддув. Его питают энергией выхлопные газы двигателя, которые обычно попросту вылетают в трубу, унося с собой и рассеивая в атмосфере чуть меньше половины всей энергии сгорания топлива.

В отличие от приводных нагнетателей, конструкции которых сильно рознятся в зависимости от типа, все турбокомпрессоры работают по одному принципу и имеют схожее устройство. К выходному фланцу выпускного коллектора мотора вместо приемной трубы крепится корпус турбины - литая «улитка», внутри которой под действием потока выхлопных газов вращается турбинное колесо. Момент передается на соосное колесо компрессора, которое вращается в своей «улитке», засасывая поступающий через фильтр воздух и подавая его под давлением в карбюратор или во впускной коллектор. При этом улучшается наполнение цилиндров и повышается мощность двигателя.

Столь же простая, сколь и гениальная, идея турбонаддува оказалась чрезвычайно сложной в реализации. Температура выхлопных газов, которую должна выдерживать турбина - 900-950 °С, а рабочие обороты турбокомпрессора исчисляются десятками и даже сотнями тысяч оборотов в минуту! Газотурбинным наддувом занимались еще в начале века - швейцарский инженер Альфред Бюхи ставил свои первые опыты до первой мировой войны. Как и приводные компрессоры, турбонаддув сначала появился на авиационных двигателях. Например, француз профессор Рато в 1919 году оснастил мотор аэроплана Breguet турбокомпрессором и промежуточным охладителем (!) - и «наддутый» аэроплан немедленно побил рекорд высоты, прорвавшись за десятикилометровый рубеж

Но основным препятствием широкому применению турбонаддува вплоть до 60-х годов оставалось отсутствие недорогой технологии высокоточного литья из жаропрочных материалов.

Первым серийным автомобилем с бензиновым двигателем, оснащенным турбонадяувом, стал печально знаменитый заднемоторный Chevrolet Corvair - тот самый, «опасный на любой скорости». Оппозитная «шестерка» воздушного охлаждения, которая в безнаддувном варианте отдавала со своих 2300 «кубиков» 95 л. е., в турбоверсии на спайдере Corvair Monza 1961 года развивала 140, а позже 180 л. е.!

Но избыточная поворачиваемость, которая поначалу была свойственна этому неординарному «американцу», погубила Corvair - после нашумевшей книги адвоката Ральфа Найдера «Unsafe at any speed» спрос на машину резко упал, и даже последующие модернизации не смогли реабилитировать Corvair в глазах консервативных янки. Тень дурной славы пала и на ни в чем не повинный турбонаддув...


Ротор турбокомпрессора: вверху - новенький, внизу - загубленный некачественной смазкой


Упорный и осевой подшипники из свинцовистой бронзы, жизнь которых безвременно оборвалась из-за разгильдяйства хозяев...


Моментные кривые трех двигателей Volkswagen: «атмосферного» 1,8-литрового, 1,5-литрового 16клапанного и 1,3-литрового с турбонаддувом (turbo) и механическим нагнетателем (kompr.)


Различия в задержке отклика на увеличение подачи топлива (обороты двигателя - 2300 об/мин, IV передача). Турбокомпрессор «думает» на секунду дольше, чем приводной нагнетатель!

Следующее появление турбокомпрессора на легковых машинах произошло только спустя десятилетие в матушке Европе - 1600 резвых BMW 2002 turbo, выпущенных фирмой с 1973 по 1974 год, особой погоды не сделали, но показали путь другим. Эру массовых турбомоторов огкрыли автомобили Porsche (911 turbo, 1974 год) и SAAB 99 turbo, 1978). Ну а после 980 гола технологические преграды рухнули, и турбоверсии появились в модельном ряду почти у всех ведущих производителей.

На дизельных моторах турбонаддув обосновался раньше, но не на легковых, а на тяжелых транспортных - судовых, танковых, грузовых... Дело в том, что адаптировать турбоагрегат под дизельный двигатель проще, чем под бензиновый: в дизелях энергия выхлопных газов на малых оборотах больше. И турбине работать проще - температура выхлопных газов дизеля не поднимается выше 650-700"С. Инициатором массового применения турбодизелей на гражданских грузовиках выступила в 1958 году фирма DAF. А на легковых автомобилях турбодизели стали появляться только в начале 80-х годов, когда между ведущими автопроизводителями уже вовсю шла ожесточенная топливными кризисами и протестами «зеленых» борьба за снижение расхода топлива и загрязнения воздуха.

ЧТО СКРЫТО в «УЛИТКАХ»

Как уже упоминалось, несмотря на простоту идеи, турбокомпрессор очень сложен в проектировании и изготовлении. А для легкового автомобиля - в особенности.

Поскольку требования компактности удорожают процесс литья деталей. Именно поэтому за изготовление турбокомпрессоров берутся только специализированные ирмы - Garrett (США), КК (Германия), Holset (Англия), IHI (Япония), - и автомобильным фирмам дешевле покупать агрегаты у них. Исключение составляют Mitsubishi и Nissan, которые осилили выпуск турбокомпрессоров самостоятельно и даже продают их «на сторону» (например, агрегатами Mitsubishi комплектовал свои двигатели SAAB).

Корпус турбокомпрессора и «улитку» турбины отливают из специального ковкого чугуна, обладающего высокой жаропрочностью, но, увы, способного дать трещину при резком перепаде температур - например, при попадании воды. Внутри корпуса в подшипниках скольжения из свинцовистой бронзы вращается ось, с одной стороны которой находится приваренное турбинное колесо из жаростойкого сплава, а к другому концу крепится крыльчатка компрессора - она, как и ее «улитка», не столь теплона гружена, что позволяет отливать эти детали из алюминиевых сплавов.

От осевых перемещений вал удерживает упорный подшипник, выполненный в виде широкой шайбы с прорезью. Все подшипники смазываются моторным маслом, которое поступает под давлением из системы смазки двигателя - к корпусу турбокомпрессора подходят подводящая и сливная масляные магистрали. Встречаются и агрегаты с водяным охлаждением, но редко

Вал с крыльчатками после сборки тщательно балансируется - малейший дисбаланс вызовет вибрацию ротора и неизбежно выведет турбокомпрессор из строя. Ведь рабочие обороты вала могут превышать 200000 об/мин!

Поначалу турбокомпрессорам были свойственны очень большие задержки «в отклике»: вы уже нажали на педаль газа, а мотор все ждет, ждет... Это - так называемое турбозапаздывание - turbolag. А еще - отказывались работать при малых и средних оборотах, когда невелико давление выхлопных газов («турбояма» - провал моментной характеристики двигателя до 2500-3500 об/мин). Например, турбокомпрессор на Chevrolet Corvair начинал работать только после того, как «оппозитник» раскручивался до 5000 об/мин - практически до максимальных оборотов. С этим боролись, уменьшая массу и момент инерции ротора. При этом возрастало давление наддува в зоне малых оборотов, но по мере их набора образовывались излишки, которые необходимо «стравливать», чтобы у мотора не случился «гипертонический криз».


Кривые, иллюстрирующие «тепловой удар» подшипников турбокомпрессора при остановке двигателя. Температура выхлопных газов -950 °С

Поэтому все турбокомпрессоры бензиновых, а позже и дизельных, двигателей стали снабжать регулятором давления наддува. Как правило, он срабатывает при определенном пороговом значении давления наддувочного воздуха в компрессоре - воздух давит на мембрану, преодолевая сопротивление тарированной пружины, и посредством механической тяги приоткрывает перепускной клапан в корпусе турбины, отводя часть выхлопных газов мимо турбинного колеса. Раньше встречались другие схемы регулирования - например, по давлению самих выхлопных газов. А теперь на современных моторах этим заведует электроника.

Конечно, при перепуске падает КПД афегата, но избежать этого, регулируя производительность турбокомпрессора другим способом - например, изменяя в зависимости от оборотов ротора угол воздействия потока выхлопных газов на лопатки турбины, - удается пока немногим. Турбокомпрессоры с изменяемой геометрией соплового аппарата, в которых пневмомеханическим приводом регулируется угол наклона лопаток сопла, выпускают лишь Garrett и несколько других ведущих фирм.

БОЛЕЗНИ И УХОД

Агрегат турбонаддува выполнен как необслуживаемый, то есть никакого специфического ухода и регулировки он не требует и после выработки ресурса, как правило, равного или превышающего ресурс самого мотора, подлежит замене. Однако можно сформулировать несколько простых рекомендаций, которые вооружат владельца автомобиля с турбодвигателем знанием ситуаций, в которые попадать нежелательно.

Подшипники ротора - это главный узел турбокомпрессора, от которого в основном зависит работоспособность всего агрегата. И нуждаются они главным образом в обильной и высококачественной смазке. Поэтому простейший совет - регулярно, по инструкции, менять фильтр и масло в двигателе и следить за его уровнем - для хозяина турбомотора должен стать железной заповедью. Масло может быть как на синтетической, так и на минеральной основе - это не столь существенно. Вообще, при выбор» типа смазки лучше руководствоваться заводскими указаниями и ни в коем случае не смешивать масла, даже одного типа, но разных сортов. Главное - класс качества масла по API должен быть не ниже SG/CD. Именно этот индекс свидетельствует о качестве пакета присадок, которые должны быть рассчитаны на работу в напряженнейшей зоне подшипникового узла турбокомпрессора, где и условия трения, и температура масла могут достигать экстремальных значений.

Но масло не только смазывает подшипники, но и охлаждает узел, поддерживая температуру на допустимом уровне. Если условия смазки ухудшаются - например, долго не меняли масло, и отложения снизили пропускную способность магистралей, - то масло начинает застаиваться в подшипниковом узле, что увеличивает теплонапряженность, и это вызывает закоксовывание и еще большее засорение магистрали. В итоге подшипники рано или поздно остаются сухими, а за этим следует их задир и поломка всего агрегата.

Еще один узел турбокомпрессора, исправность которого отражается и на состоянии «здоровья» двигателя - газомасляные уплотнения оси ротора, обычно выполнение в виде упругих стальных колец типа поршневых. Они изолируют систему смазки от впускной и выпускной полостей турбонагнетателя, и при их износе - а это обычно следует за радиальным биением ротора или люфтом его оси - масло начинает выдавливаться в полость компрессора, попадает в цилиндры и сгорает с характерным сизым дымком. Владелец грешит на «поршневую», а дело-то в турбокомпрессоре!

Поначалу этот эффект проявляется при запуске остывшего двигателя - клуб сизого дыма из выхлопной трубы может свидетельствовать о начавшемся износе подшипникового узла и уплотнений. Но точно так же проявляется и износ, например, маслосъемных колпачков или направляющих втулок клапанов самого двигателя...

Кстати, похожую картину может вызвать... засоренный воздушных фильтр! Когда он оказывает значительное сопротивление впуску, в коллекторе, особенно на холостых оборотах в бензиновых двигателях, возникает повышенное разрежение, на которое уплотнения просто не рассчитаны.

Влияет на работоспособность турбокомпрессора и состояние самого двигателя. Например, при износе поршневых колец возникающее избыточное давление картерных газов может препятствовать сливу масла из турбоагрегата - с соответствующими последствиями. Тот же самый эффект наблюдается и при ухудшении вентиляции картера. А нарушение топливных регулировок - неисправность системы впрыска - может привести к тому, что образующийся при неполном сгорании топлива нагар будет откладываться на колесе турбины и перепускном клапане, вызывая дисбаланс ротора и мешая нормальной работе регулятора давления.

Об исправности турбонагнетателя можно судить как по динамике разгона, так и по давлению наддувочного воздуха. Как правило, все автомобили с бензиновыми турбомоторами снабжены стрелочными указателями давления наддува в комбинации приборов. На холостом ходу стрелка прибора демонстрирует разрежение во впускном коллекторе и на «прогазовки» без нагрузки реагирует слабым отклонением. А вот при разгоне, скажем, на третьей передаче с небольших оборотов хорошо видно, как после открытия дроссельной заслонки "в пол" да вление наддува (и ускорение автомобиля) нарастает сначала медленно, а потом - в районе 2000-2500 об/мин на современных машинах - стрелка резко уходит вправо до упора, из-под капота доносится приглушенный свистящий звук турбины, и автомобиль мощно устремляется вперед. Кому-то этот «турбокайф» нравится, кому-то мешает прогнозировать реакцию машины на изменение подачи топлива - это дело вкуса. В конце концов, некоторые фирмы (Opel, Citroen, SAAB) предлагают самые «заряженные» версии или с «взрывными» четырехцилиндровыми турбомоторами, или с «ровными» и более тяговитыми на малых оборотах «шестерками»...

И наконец, немного «ездовых» рекомендаций. Особенных требований к прогреву турбодвигателей нет - исправная система смазки с нормальным фильтром обеспечивает мгновенную подачу масла к подшипникам нагнетателя. А вот при выключении двигателя после напряженной езды, когда мотор длительное время работал под большой нагрузкой на высоких оборотах, лучше дать ему поработать минутудругую на холостом ходу. Дело в том, что прекращение циркуляции масла после интенсивной работы вызывает «тепловой удар» - охлаждение резко прекращается, и масло в корпусе подшипников турбоагрегата нагревается до трехсот градусов, закоксовываясь и образуя отложения. А в крайнем случае - например, при остановке после долгой пробуксовки в грязи, когда «улитка» турбины раскаляется докрасна,- могут подклинить и даже расплавиться подшипники ротора...


Турбокомпрессор Garrett VNT25 с изменяемой геометрией соплового аппарата. С 1991 года он устанавливается на дизельный автомобиль Fiat Croma 2,5 TD

В лаборатории турбонаддува НАМИ полным ходом идет адаптация турбокомпрессора к «восьмерочному» мотору. Результаты не за горами...

А перед преодолением водных преград нужно оценить глубину брода - чугунный корпус турбины после «водных процедур» может треснуть, особенно на бензиновых моторах, где он сильнее нагрет.

«ЗА» И «ПРОТИВ» ТУРБОНАДДУВА

Начнем с минусов. Двигатель с турбонаддувом (да и с наддувом вообще) сложнее и дороже и в производстве, и в эксплуатации - ему требуется самое лучшее масло, да и менять смазку нужно почаще. До сих пор не удается избежать «турбоямы» и запаздываний, свойственных газотурбинному наддуву. Уменьшить эти явления может применение двух последовательно включенных турбокомпрессоров, «настроенных» по-разному - такая схема называется biturbo и широко применялась в автоспорте, а на легковых автомобилях ее впервые установила на одноименный автомобиль фирма Maserati. Но, увы, «битурбированный» мотор обходится еще дороже.

И, конечно, большие нагрузки испытывает сам двигатель, причем рост теплонапряженности и механических нагрузок пропорционален увеличению давления наддува (а значит, и мощности). Поэтому на серийных турбомоторах ограничивают давление до 0,3-0,8 кг/кв.см, обходясь весьма скромной по спортивным меркам форсировкой на 30-50%. Зато это позволяет, усилив детали двигателя (поршень, шатун и т. д.), сохранить ресурс мотора на «атмосферном» уровне.

Безболезненно повысить давление еще процентов на 10-20 позволяет промежуточный охладитель наддувочного воздуха (intercooler), который представляет из себя алюминиевый радиатор-теплообменник, включенный во впускной тракт между компрессором и коллектором. Он довольно эффективно снижает температуру сжатого воздуха и теплопоток через двигатель, позволяя сжечь в цилиндрах больше топлива без риска возникновения детонации. Но - опять же недешев...

Ну а плюсы турбонаддува - повышение литровой мощности, КПД двигателя, улучшение разгонной динамики, эластичности и (по сравнению с «атмосферным» мотором одинаковой мощности) топливной экономичности, - очевидны. К тому же, применение наддува позволяет уменьшить количество токсичных выбросов - СО и СН, а при промежуточном охлаждении воздуха еще и окислов азота NOx. А в последнее время появляются новые аргументы в пользу наддува.

XXI ВЕК - С НАДДУВОМ ИЛИ БЕЗ?

Начиная со второй половины 80-х годов, ведущие автомобилестроительные фирмы мира вкладывают миллионы долларов в научно-исследовательсие работы по уменьшению токсичности, снижению расхода топлива, одновременно стремясь повысить литровую мощность. Постепенно внедряя такие решения, как замена карбюратора впрыском, электронная оптимизация режимов работы, каталитическая нейтрализация, резонансный впуск и выпуск, регулируемые фазы, инженеры довели четырехтактный двигатель Отто почти до совершенства. Осталось применить на бензиновых моторах непосредственный впрыск, что и делают сейчас одними из первых Mitsubishi и Subaru. А что дальше?

Похоже, что в начале следующего столетия двигатель внутреннего сгорания все же будет преобладать над другими альтернативными силовыми установками. И, чтобы обеспечить очень жесткие нормы по токсичности, известные как Euro 3, конструкторам придется искать новые пути кардинальной модернизации поршневых моторов. И скорее всего, при этом забыть про наддув не удастся.

Один из путей - создание двигателей, реализующих циклы с внутренним охлаждением (циклы Миллера-Аткинсона) с обязательным применением наддува или механического, или комбинированного.

Второй путь - переход на... двухтактный цикл! Теоретически он может обеспечить лучшие показатели, и поэтому наследники смешных моторчиков DKW крутятся теперь на испытательных стендах Ford и Jaguar. Опять-таки вооруженные наддувом...

Третье направление - применение наряду с непосредственным впрыском различных схем наддува для обеспечения работы бензиновых двигателей на сверхобедненных смесях. Одни предлагают для этого комбинацию отключаемого приводного нагнетателя для малых оборотов и турбонаддува для средних и высоких. Ну а некоторые продолжают работать над еше одним типом агрегата наддува - волновым обменником давления

Сотргех, сочетающим достоинства всех традиционных видов нагнетателей, но исключительно сложным в разработке и производстве.

Идет совершенствование и старого доброго турбонаддува. Благодаря применению керамики и спецпластмасс снижается масса и момент инерции ротора, подшипники на газовой смазке и новые уплотнения позволят снизить потери на трение...

Так что мы стоим на пороге новых значительных изменений в конструкции двигателей - и Авторевю, несомненно. будет уделять внимание любым интересным новшествам. Жаль, что Россия в этой гонке - безнадежный аутсайдер.

Хотя наши отечественные разработки, пожалуй, могли бы составить конкуренцию «потрохам» концепт-каров именитых фирм. Приятно, что лаборатория турбонаддува НАМИ на голом энтузиазме продолжает научный поиск и практические разработки. Например, сделан и «обкатан» агрегат турбонаддува для «классических» двигателей ВАЗ, готовится турбонагнетатель для «восьмых» моторов. Позже мы о них расскажем подробнее. Кстати, тем бедолагам, кто мучается с неисправным турбонаддувом иномарок, здесь постараются помочь...

А. АЗБЕЛЬ Л. ГОЛОВАНОВ

С момента появления двигателя внутреннего сгорания перед конструкторами появилась задача повышения его мощности. А это возможно только одним путем – увеличением количества сгораемого топлива.

Способы повышения мощности двигателя

Для решения этой проблемы использовалось два метода, один из которых – повышение объема камер сгорания. Но в условиях постоянно ужесточающийся экологических требований к силовым агрегатам автомобилей этот метод повышения мощности сейчас практически не используется, хотя раннее он был приоритетным.

Второй метод повышения мощности сводится к принудительному увеличению количества горючей смеси. В результате этого даже на малообъемных силовых установках удается существенно повысить эксплуатационные показатели.

Если с увеличением количества подаваемого в цилиндры топлива проблем не возникает (система его подачи легко регулируется под требуемые условия), то с воздухом не все так просто. Силовая установка самостоятельно его закачивает за счет разрежения в цилиндрах и повлиять на объем закачки невозможно. А поскольку для максимально эффективного сгорания в цилиндрах должна создаваться топливовоздушная смесь с определенным соотношением, то увеличение только одного количества топлива никакого прироста мощности не дает, а наоборот – повышается расход, а мощность падает.

Выходом из ситуации является принудительная накачка воздуха в цилиндры, так называемый наддув двигателя. Отметим, что первые устройства, нагнетающие воздух в камеры сгорания, появились практически с момента появления самого , но долгое время их на автотранспорте не использовали. Зато наддувы достаточно широко использовались в авиации и на кораблях.

Виды по способу создания давления

Наддув двигателя – задумка теоретически простая. Суть ее сводится к тому, что принудительная закачка позволяет существенно увеличить количество воздуха в цилиндрах по сравнению с объемом, который засасывает сам мотор, соответственно, и топлива подать можно больше. В результате удается повысить мощность силовой установки без изменения объема камер сгорания

Но это в теории все просто, на практике же возникает множество трудностей. Основная проблема сводится к определению, какая конструкция наддува является самой эффективной и надежной.

В целом разработано три типа нагнетателей, различающихся по способу нагнетания воздуха:

  1. Roots
  2. Lysholm (механический нагнетатель)
  3. Центробежный (турбина)

Каждый из них имеет свои конструктивные особенности, достоинства и недостатки.

Roots

Нагнетатель типа Roots изначально был представлен в виде обычного шестеренчатого насоса (что-то схожее с масляным насосом), но со временем конструкция этого наддува сильно изменилась. В современном нагнетателе Roots шестеренки заменены на два ротора, вращающихся разнонаправлено, и установленных в корпусе. Вместо зубьев на роторах сделаны лопастные кулачки, которыми происходит зацепление роторов между собой.

Главной особенностью наддува Roots является способ нагнетания. Давление воздуха создается не в корпусе, а на выходе из него. По сути, лопасти роторов просто захватывают воздух и выталкивают его в выходной канал, ведущий к впускному коллектору.

Устройство и работа нагнетателя Roots

Но у такого нагнетателя есть несколько существенных недостатков – создаваемое им давление ограничено, при этом еще присутствует пульсация воздуха. Но если второй недостаток конструкторы смогли преодолеть (путем придания роторам и выходным каналам особой формы), то проблема ограничения создаваемого давления более серьезна – либо приходится увеличивать скорость вращения роторов, что негативно сказывается на ресурсе нагнетателя, либо создавать несколько ступеней нагнетания, из-за чего устройство становится очень сложным по конструкции.

Lysholm

Наддув двигателя типа Lysholm конструктивно схож с Roots, но у него вместо роторов используются спиралевидные шнеки (как в мясорубке). В такой конструкции создание давления происходит уже в самом нагнетателе, а не на выходе. Суть проста – воздух захватывается шнеками, сжимается в процессе транспортировки шнеками от входного канала на выходной и затем выталкивается. За счет спиралевидной формы процесс подачи воздуха идет непрерывно, поэтому никакой пульсации нет. Такой нагнетатель обеспечивает создание большего давления, чем конструкция Roots, работает бесшумно и на всех режимах мотора.

Нагнетатель типа Lysholm, другое название - винтовой.

Основным недостатком этого наддува является высокая стоимость изготовления.

Центробежный тип

Центробежные нагнетатели – самый сейчас распространенный тип устройства. Он конструктивно проще, чем первые два типа, поскольку рабочий элемент у него один – компрессионное колесо (обычная крыльчатка). Установленная в корпусе эта крыльчатка захватывает воздух входного канала и выталкивает его в выходной.

Центробежный нагнетатель с газотурбинным приводом

Особенность работы этого нагнетателя сводится к тому, что для создания требуемого давления необходимо, чтобы турбинное колесо вращалось с очень большой скоростью. А это в свою очередь сказывается на ресурсе.

Типы привода, их достоинства и недостатки

Вторая проблема – привод нагнетателя, а он может быть:

  1. Механическим
  2. Газотурбинным
  3. Электрическим

В механическом приводе в действие нагнетатель приводится от коленчатого вала посредством ременной, реже – цепной, передачи. Такой тип привода хорош тем, что наддув начинает работать сразу после запуска силовой установки.

Но у него есть существенный недостаток – этот тип привода «забирает» часть мощности мотора. В результате получается замкнутый круг – нагнетатель повышает мощность, но сразу же ее и отбирает. Использоваться механический привод может со всеми типами наддувов.

Газотурбинный привод сейчас пока является самым оптимальным. В нем нагнетатель приводится в действие за счет энергии сгоревших газов. Этот тип привода используется только с центробежным наддувом. Нагнетатель с таким типом привода получил название турбонаддува.

Чтобы использовать энергию отработанных газов конструкторы, по сути, просто взяли два центробежных нагнетателя и соединили их крыльчатки одной осью. Далее один нагнетатель подсоединили к выпускному коллектору. Выхлопные газы, на выходе из цилиндров двигаются с высокой скоростью, попадают в нагнетатель и раскручивают крыльчатку (она получила название турбинное колесо). А поскольку она соединена с крыльчаткой (компрессорным колесом) второго нагнетателя, то он начинает выполнять требуемую задачу – нагнетать воздух.

Турбонаддув хорош тем, что не оказывает влияние на мощность двигателя. Но у него есть недостаток, причем существенный – на малых оборотах двигателя он из-за небольшого количества выхлопных газов не способен эффективно нагнетать воздух, он эффективен только на высоких оборотах. К тому же в турбонаддуве присутствует такой эффект как «турбояма».

Суть этого эффекта сводится к тому, что турбонаддув не обеспечивает мгновенную реакцию на действия водителя. При резком изменении режима работы двигателя, к примеру, при разгоне, на первом этапе энергии выхлопных газов недостаточно, чтобы наддув закачал требуемое количество воздуха, нужно время, чтобы в цилиндрах прошли процессы и повысилось количество отработанных газов. В результате при резком нажатии на педаль, машина «тупит» и не разгоняется, но как только наддув наберет обороты, авто начинает активно ускоряться – «выстреливает».

Есть и еще один не очень приятный эффект – «турболаг». У него суть примерно та же, что и у «турбоямы», но природа у него несколько другая. Сводится она к тому, что наддув обладает запоздалой реакцией на действия водителя. Обусловлена она тем, что нагнетателю требуется время захватить, закачать воздух и подать его в цилиндры.

Показательные графики эффектов «турбояма» и «турболаг» в зависимости от мощности

«Турбояма» появляется только в нагнетателях, работающих от энергии выхлопных газов, в устройствах же с механических приводом ее нет, поскольку производительность наддува пропорциональна оборотам двигателя. А вот «турболаг» присутствует во всех типах нагнетателей.

В современных автомобилях начинают внедрять электрические приводы наддува, но они только зарождаются. Пока их используют, как дополнительный механизм, для исключения «турбоямы» в работе турбонаддува. Не исключено что вскоре и появится разработка которая заменит привычные нам нагнетатели.

Электронагнетатель от фирмы Valeo

Для их эффективной работы необходимо более высокое напряжение, поэтому используется вторая сеть со своим аккумулятором на 48 вольт. Концерн Audi вообще планирует перевести все оборудование на повышенное напряжение – 48 вольт, так как увеличивается количество электронных систем и соответственно нагрузка на сеть автомобиля. Возможно в будущем все автопроизводители перейдут на повышенное напряжение бортовой сети.

Иные проблемы

Помимо способа нагнетания и типа привода существует еще немало вопросов, которые успешно решились или решаются конструкторами.

К ним относится:

  • нагрев воздуха при сжатии;
  • «турбояма»;
  • эффективная работа нагнетателя на всех режимах.

Во время нагнетания воздух сильно нагревается, что приводит к снижению его плотности, а это в свою очередь сказывается на детонационном пороге топливовоздушной смеси. Устранить эту проблему удалось путем установки интеркулера – радиатора охлаждения воздуха. Причем осуществлять охлаждение этот узел может разными способами – потоком встречного воздуха или за счет жидкостной системы охлаждения.

Варианты исполнения систем наддува

Но установка интеркулера породила другую проблему – увеличение «турболага». Из-за радиатора общая длина воздуховода от нагнетателя к впускному коллектору существенно увеличилась, а это повлияло на время нагнетания.

Проблема с «турбоямой» автопроизводителями решается по-разному. Одни снижают массу составных элементов, другие используют технологию изменяемой геометрии турбопривода. При первом варианте решения проблемы, снижение массы крыльчаток приводит к тому, что для раскручивания наддува требуется меньше энергии. Это позволяет нагнетателю раньше вступить в работу и обеспечить давление воздуха даже при незначительных оборотах двигателя.

Что касается геометрии, то за счет использования специальных крыльчаток с приводом от актуатора, установленных в корпусе турбинного колеса удается осуществлять перенаправление потока отработанных газов в зависимости от режима работы мотора.

Повышение эффективности работы нагнетателя на всех режимах работы некоторые производители решают путем установки двух, а то и трех нагнетателей. И здесь уже каждая автокомпания поступает по-разному. Одни устанавливают два турбонаддува, но разных размеров. «Малый» нагнетатель отрабатывает на небольших оборотах мотора, снижая эффект «турбоямы», а при увеличении оборотов в работу включается «большой» наддув. Другие же автопроизводители применяют комбинированную схему, в которой за малые обороты «отвечает» нагнетатель с механическим приводом, что вовсе устраняет «турбояму», а на высоких оборотах задействуется уже турбонаддув.

Напоследок отметим, что выше указаны только одни из основных проблем, связанных с принудительной подачей воздуха в цилиндры, в действительности их больше. К ним можно отнести передув и помпаж.

Увеличение мощности нагнетателем, по сути, ограничено только одним фактором - прочнотью составных элементов силовой установки. То есть, мощностные характеристики можно увеличивать только до определенного уровня, превышение которого приведет к разрушению узлов мотора. Это превышение и называется передувом. Чтобы он не произошел, система принудительного нагнетания воздуха оснащается клапанами и каналами, которые предотвращают раскручивание крыльчатки выше установленных оборотов, получается, что производительность наддува имеет граничную отметку. Дополнительно при достижении определенных условий ЭБУ системы питания корректирует количество подаваемого в цилиндры топлива.

Помпаж можно охарактеризовать как «обратное движение воздуха». Возникает эффект при резком переходе с высоких оборотов на низкие. В итоге, нагненататель уже накачал воздух в большом количестве, но из-за снижения оборотов он становиться невостребованным, поэтому он начинает возвращаться к наддуву, что может стать причиной его поломки.

Клапан blow-off

Проблема помпажа решена использованием обходных каналов (байпас), по которым сжатый не расходованный воздух перекачивается на входной канал перед нагнетателем, тем самым он смягчает, но не устраняет, нагрузки при помпаже. Второй системой которая полностью решает проблему помпажа, является установка перепускного клапана или blow-off, который при необходимости сбрасывает воздух в атмосферу.

Установка нагнетателей воздуха на силовые установки пока является самым оптимальным способом повышения мощности.

Autoleek
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.